
1. The Substring Array Convention for Binary
Tables

Note: This convention applies to the TFORMn keyword in bi-
nary tables, as discussed in section 7.3.1

1.1. Preface

The convention described here for representing arrays of char-
acter strings within a character array field in aFITS binary table
was first described in an appendix to theFITS binary table defini-
tion paper (Cotton, Tody, & Pence, 1995, Astron. & Astrophys.
Suppl., 113, 159), and subsequently in Appendix B of Version
2 of theFITS Standard document. This material was removed
from Version 3 of theFITS Standard, with the expectation that
this convention would instead be documented in the Registryof
FITS Conventions that is maintained by the IAUFITS Working
Group. Section 2, below, is reproduced nearly verbatim fromthe
above mentioned appendix in theFITS Standard with only minor
editorial changes.

1.2. Convention Definition

This “substring array” convention may be used to specify that
a character array field (TFORMn = ’rA’) consists of an array
of either fixed-length or variable-length substrings within the
field. This convention utilizes the option described in theFITS
Standard to have additional characters following the datatype
code character in theTFORMn value field. The full form for the
value ofTFORMn within this convention is

’rA:SSTRw/nnn’

and a simpler form that may be used for fixed-length substrings
only is

’rAw’

where

r is an integer giving the total length including any de-
limiters (in characters) of the field,

A signifies that this is a character array field,
: indicates that a convention indicator follows,
SSTR indicates the use of this “Substring Array” conven-

tion,
w is an integer≤ r giving the (maximum) number of char-

acters in an individual substring (not including the
delimiter), and

/nnn if present, indicates that the substrings have
variable-length and are delimited by an ASCII text
character with decimal valuennn in the range 032 to
126 decimal, inclusive. This character is referred to
as the delimiter character. The delimiter character for
the last substring will be an ASCII NUL.

To illustrate this usage:

’40A:SSTR8’ signifies that the field is 40 characters
wide and consists of an array of 5 8-character fixed-
length substrings. This could also be expressed using
the simpler form as’40A8’

’100A:SSTR8/032’ signifies that the field is 100 char-
acters wide and consists of an array of variable-
length substrings where each substring has a maxi-
mum length of 8 characters and, except for the last
substring, is terminated by an ASCII SPACE (deci-
mal 32) character.

Note that simpleFITS readers that do not understand this
substring convention can ignore theTFORM characters following
therA and can interpret the field simply as a single long string.

The following rules complete the full definition of this con-
vention:

1. In the case of fixed-length substrings, ifr is not an in-
teger multiple ofw then the remaining odd characters are
undefined and should be ignored. For example ifTFORMn

=’14A:SSTR3’, then the field contains 4 3-character sub-
strings followed by 2 undefined characters.

2. Fixed-length substrings must always be padded with blanks
if they do not otherwise fill the fixed-length subfield. The
ASCII NUL character must not be used to terminate a fixed-
length substring field.

3. The character following the delimiter character in variable-
length substrings is the first character of the following sub-
string.

4. The method of signifying an undefined or null substring
within a fixed-length substring array is not explicitly defined
by this convention (note that there is no ambiguity if the
variable-length format is used). In most cases it is recom-
mended that a completely blank substring or other adopted
convention (e.g.’INDEF’) be used for this purpose although
general readers are not expected to recognize these as unde-
fined strings. In cases where it is necessary to make a distinc-
tion between a blank, or other, substring and an undefined
substring use of variable-length substrings is recommended.

5. Undefined or null variable-length substrings are designated
by a zero-length substring, i.e., by a delimiter character (or
an ASCII NUL if it is the last substring in the table field) in
the first position of the substring. An ASCII NUL in the first
character of the table field indicates that the field containsno
defined variable-length substrings.

6. Section 7.3 of Version 3 of the FITS Standand document dis-
cusses a syntax using theTDIMn keyword for describing mul-
tidimensional arrays of any datatype which can also be used
to represent arrays of fixed-length substrings. For a simple
one-dimensional array of substrings (a two-dimensional ar-
ray of characters) the substring array convention described
here is preferred over the “multidimensional array” conven-
tion (using theTDIMn keyword). Higher dimensional arrays
of (fixed-length) strings cannot be represented using this sub-
string array convention and so require the use of the multidi-
mensional array convention.

7. This substring convention may be used in conjunction with
the variable-length array feature in binary tables. In thiscase,
the two possible full forms for the value of theTFORM key-
word are

TFORMn = ’rPA(emax):SSTRw/nnn’

TFORMn = ’rPA(emax):SSTRw’

for the variable and fixed cases, respectively.

1

1.3. Usage Notes

The simpler ’rAw’ form of this convention has been
supported by the CFITSIO FITS interface library
(http://heasarc.gsfc.nasa.gov/fitsio/) since 1996 and has
been used in some publicly distributedFITS files produced by
various projects. The longer’rA:SSTRw/nnn’ form has rarely
been used, and, as far as currently known, never for arrays of
variable-length strings.

2

2. Spatial Region File Convention

[need to obtain the Latex source file from Arnold Rots]

3

3. The SIP Convention for Representing Distortion
in FITS Image Headers

3.1. Preface

This convention was submitted to the registry by David Shupe
and Richard Hook in September 2008. The SIP convention was
originally used by the Spitzer Science Center (SSC) in its imag-
ing products. The SIP convention is supported by WCSTOOLS
(written by D. Mink), the Starlink AST library, and the IDL
ASTROLIB library. Tools that use these libraries (e.g., ds9and
the GAIA Graphical Astronomy and Image Analysis Tool) in-
herit support for SIP. Also, the drizzle program and relatedtools
developed by STScI and ST-ECF, and the astrometry.net astro-
metric calibration service use SIP.

3.2. Introduction

The Simple Imaging Polynomial, or SIP, convention providesa
straightforward means for storing distortion informationin FITS
image headers. SIP was initially developed before the launch
of theSpitzer Space Telescope. Images from theSpitzer instru-
ments are distorted by a few percent relative to a regular skygrid.
This distortion, expressed as a function of pixel position,is well-
represented by polynomials, and it was desired to store the dis-
tortion information in the FITS headers of each Basic Calibrated
Data (BCD) product. Writing the coefficients for each image was
motivated particularly by the optics of the Multiband Imaging
Photometer for Spitzer (MIPS) instrument (Rieke et al. 2004)—
the distortion changes with scan mirror position, and hencefrom
one image to the next.

The development of the SIP convention proceeded in
parallel with work on the World Coordinate System (WCS)
FITS standard. The first two papers in this series (Greisen &
Calabretta 2002, “Paper I”; and Calabretta & Greisen 2002,
“Paper II”) specifying the WCS keywords (sans distortion) have
been approved by the IAU FITS Working Group and are now
standard. “Paper IV” addressing distortion has been drafted
(http://www.atnf.csiro.au/people/mcalabre/WCS/index.html)
but is not yet final. The SIP keywords are compliant with the
first two papers, and have been influenced by early discussions
of Paper IV, but are distinct from the proposed keywords in
Paper IV.

This document is an expanded version of a paper presented
at the 2004 ADASS conference (Shupe et al. 2005). The authors
of that paper include the main contributors to the formulation
and initial implementation of the SIP convention. The derivation
of distortion coefficients for the Spitzer MIPS instrument using
this convention are described in Morrison et al. 2007.

3.3. Definitions of the Distortion Keywords

The SIP convention derives its name from the four characters
‘-SIP’ that are appended to the values ofCTYPE1 andCTYPE2.
These extra characters were included in early drafts of Paper
IV to denote the distortion representation; however, laterdrafts
dropped this form. We chose ‘-SIP’ to be distinct from the
‘-PLP’ that was to be used in Paper IV for polynomials, and be-
cause it has the useful mnemonic “Simple Imaging Polynomial”.

We defineu, v as relative pixel coordinates with origin at
CRPIX1, CRPIX2. Following Paper II,x, y are “intermediate
world coordinates” in degrees, with origin atCRVAL1, CRVAL2.

Let f (u, v) andg(u, v) be the quadratic and higher-order terms of
the distortion polynomial. Then
(

x
y

)

=

(

CD1 1 CD1 2

CD2 1 CD2 2

) (

u + f (u, v)
v + g(u, v)

)

(1)

We defineA p q andB p q as the polynomial coefficients for
polynomial termsupvq. Then

f (u, v) =
∑

p,q

A p qupvq
, p + q ≤ A ORDER, (2)

g(u, v) =
∑

p,q

B p qupvq, p + q ≤ B ORDER. (3)

For example, for a third-order polynomial,

f (u, v) = A 2 0u2 + A 0 2v2 + A 1 1uv + A 2 1u2v + A 1 2uv2 + A 3 0u3 + A

A ORDER andB ORDER can take on integer values ranging from 2
to 9.

TheCDi j keywords encode skew as well as rotation and scal-
ing. The CD-matrix values together with the higher-order distor-
tion polynomials, as in Equations 1, 2, and 3, define a unique
transformation from pixel coordinates to the plane-of-projection.

For Spitzer, we also provide polynomials for the reverse
transformation, for fast inversion. Corrected pixel coordinates
U,V are found from
(

U
V

)

= CD−1

(

x
y

)

(4)

then the original pixel coordinates are computed by

u = U+F(U,V) = U+
∑

p,q

AP p qU pVq, p+q ≤ AP ORDER, (5)

v = V+G(U,V) = V +
∑

p,q

BP p qU pVq, p+q ≤ BP ORDER.(6)

To make a reasonably accurate reverse transformation, in general
it is necessary to include linear terms in the reverse coefficients.

Finally, borrowing another idea from a Paper IV draft, the
values of the keywordsA DMAX andB DMAX give bounds on the
maximum distortion over the array. These optional keywords
could be used to estimate the maximum error that would result
from not evaluating the distortion polynomial.

3.4. Example: Spitzer-IRAC Channel 4

We take as an example the distortion of theSpitzer Infrared
Array Camera (IRAC) instrument (Fazio et al. 2004), which is
characterized by cubic coefficients. Polynomial distortion of this
form (plus linear terms) was fit toSpitzer data from the Great
Observatories Origins Deep Survey program (S. Casertano, pri-
vate communication). The linear terms are folded into theCDi j.
An excerpt from an actual BCD header produced by the Spitzer
pipeline for IRAC Channel 4 is shown below.

CTYPE1 = ’RA---TAN-SIP’ / RA---TAN with distortion

CTYPE2 = ’DEC--TAN-SIP’ / DEC--TAN with distortion

CRVAL1 = 202.581507417836 / [deg] RA at CRPIX1,CRPIX2

CRVAL2 = 47.2465528124827 / [deg] DEC at CRPIX1,CRPIX2

CRPIX1 = 128. / Reference pixel along axis

4

CRPIX2 = 128. / Reference pixel along axis 2

CD1_1 = 0.000248349650353678 / Corrected CD matrix element with Pointing Recon

CD1_2 = 0.000232107213140475 / Corrected CD matrix element with Pointing Recon

CD2_1 = 0.000232418393583541 / Corrected CD matrix element with Pointing Recon

CD2_2 = -0.000246562617306562 / Corrected CD matrix element with Pointing Reco

A_ORDER = 3 / polynomial order, axis 1, detector to sky

A_0_2 = 9.0886E-06 / distortion coefficient

A_0_3 = 4.8066E-09 / distortion coefficient

A_1_1 = 4.8146E-05 / distortion coefficient

A_1_2 = -1.7096E-07 / distortion coefficient

A_2_0 = 2.82E-05 / distortion coefficient

A_2_1 = 3.3336E-08 / distortion coefficient

A_3_0 = -1.8684E-07 / distortion coefficient

A_DMAX = 2.146 / [pixel] maximum correction

B_ORDER = 3 / polynomial order, axis 2, detector to sky

B_0_2 = 4.1248E-05 / distortion coefficient

B_0_3 = -1.9016E-07 / distortion coefficient

B_1_1 = 1.4761E-05 / distortion coefficient

B_1_2 = 2.1973E-08 / distortion coefficient

B_2_0 = -6.4708E-06 / distortion coefficient

B_2_1 = -1.8188E-07 / distortion coefficient

B_3_0 = 1.0084E-10 / distortion coefficient

B_DMAX = 1.606 / [pixel] maximum correction

AP_ORDER= 3 / polynomial order, axis 1, sky to detector

AP_0_1 = 3.6698E-06 / distortion coefficient

AP_0_2 = -9.1825E-06 / distortion coefficient

AP_0_3 = -3.8909E-09 / distortion coefficient

AP_1_0 = -2.0239E-05 / distortion coefficient

AP_1_1 = -4.8946E-05 / distortion coefficient

AP_1_2 = 1.7951E-07 / distortion coefficient

AP_2_0 = -2.8622E-05 / distortion coefficient

AP_2_1 = -2.9553E-08 / distortion coefficient

AP_3_0 = 1.9119E-07 / distortion coefficient

BP_ORDER= 3 / polynomial order, axis 2, sky to detector

BP_0_1 = -2.1339E-05 / distortion coefficient

BP_0_2 = -4.189E-05 / distortion coefficient

BP_0_3 = 1.9696E-07 / distortion coefficient

BP_1_0 = 2.8502E-06 / distortion coefficient

BP_1_1 = -1.5089E-05 / distortion coefficient

BP_1_2 = -2.0219E-08 / distortion coefficient

BP_2_0 = 6.4625E-06 / distortion coefficient

BP_2_1 = 1.849E-07 / distortion coefficient

BP_3_0 = -7.6669E-10 / distortion coefficient

In this case, the reverse coefficients have the opposite sign and
roughly the same absolute values as the corresponding forward
coefficients. However, this is not true for some more distorted
fields of view, so the Spitzer headers retain the reverse coeffi-
cients in general.

The Spitzer Science Center has developed library routines to
implement this coefficient naming scheme. The functions key off
the extendedCTYPEn. The order in which the keywords are dis-
played in the example is the order in which the software searches
for them and is the most efficient for lookups using CFITSIO.

3.5. Software that Reads and Applies the Coefficients

The usefulness of this convention was greatly enhanced by the
generous efforts of a number of individuals who added support
to their software before the first release ofSpitzer data in 2004.
The mosaicking package MOPEX (Makovoz & Khan 2005) ap-

Keyword Value Keyword Value
CTYPE1 ’RA---TAN-SIP’ CTYPE2 ’DEC--TAN-SIP’

CRPIX1 2048.0 CRPIX2 1024.0

CRVAL1 5.6260667398471 CRVAL2 -72.076963036772

CD1 1 -7.8481866550866E-06 CD2 1 1.1406694624771E-05

CD1 2 1.0939720432379E-05 CD2 2 8.6942510845452E-06

A 0 2 2.1634068532689E-06 B 0 2 -7.2299995118730E-06

A 1 1 -5.194753640575E-06 B 1 1 6.1778338717084E-06

A 2 0 8.543473309812E-06 B 2 0 -1.7442694174934E-06

A 0 3 1.0622437604068E-11 B 0 3 -4.2102920235938E-10

A 1 2 -5.2797808038221E-10 B 1 2 -6.7603466821178E-11

A 2 1 -4.4012735467525E-11 B 2 1 -5.1333879897858E-10

A 3 0 -4.7518233007536E-10 B 3 0 8.5722142612681E-11

A 0 4 1.4075878614807E-14 B 0 4 6.5531313110898E-16

A 1 3 -1.9317154005522E-14 B 1 3 1.3892905568706E-14

A 2 2 3.767898933666E-14 B 2 2 -2.9648166208490E-14

A 3 1 5.0860953083043E-15 B 3 1 -2.0749495718513E-15

A 4 0 2.5776347115304E-14 B 4 0 -1.812610418272E-14

A ORDER 4 B ORDER 4

Table 1. SIP coefficients for the Hubble ACS Wide Field
Channel.

plies the SIP distortion coefficients in the Spitzer Science Center
pipelines. Support has also been added to IPAC’s Skyview
display program (http://www.ipac.caltech.edu/Skyview/).
Doug Mink implemented Spitzer distortion support in his
WCS routines (http://tdc-www.harvard.edu/software/wcstools).
SAOimage and DS9 use these routines and hence automat-
ically handle the SIP distortions. The Montage software
(http://montage.ipac.caltech.edu) (Laity et al. 2004) also uses
Mink’s routines and applies the coefficients. Support in the
GAIA viewer has been added via David Berry’s AST library.
Wayne Landsman has added support to the IDL ASTROLIB.
The Drizzle software (Fruchter & Hook 2002) has also been
modified to read these coefficients.

Finally we note that the astrometry.net service also uses the
SIP convention for encoding the non-linear parts of the distor-
tions it calculates in arbitrary images.

3.6. SIP for Hubble

Of the cameras currently on board the Hubble Space Telescope,
the distortion is largest by far for the Wide Field Channel (WFC)
of the Advanced Camera for Surveys (ACS) where it amounts to
more than fifty pixels at the corner of the image in addition toan
even larger (linear) skew term. The newer Wide Field Camera 3,
to be installed in October 2008, has similarly large distortions.

The image distortion for Hubble cameras is currently char-
acterized by a FITS table known as the Image Distortion
Correction Table (IDCTAB) that includes information aboutthe
scale and orientation of the instrument aperture in the telescope
focal plane as well as the distortion polynomial coefficients.
Software has been developed that will combine the IDCTAB
information with the normal information from the telescope’s
pointing control software to write out a header which makes the
header WCS keywords fully compatible with the table values
and also populates the SIP-keywords (or at least the most impor-
tant ones). An example of the resultant header is given in Table
1.

Currently the writing of these SIP keywords is an unsup-
ported feature for Hubble data. However, it is planned to for-
mally include such headers in future to provide users with a full,

5

self-describing distortion model without the need for access to
external files in non-standard formats. The software to readthe
coefficients and apply them to remove image distortion already
exists within the standard Hubble data processing tools.

3.7. Issues and Caveats

The SIP convention has been in use for several years and is be-
coming more widespread. To gauge feelings about it we recently
have asked for comments from several people who have used it
for and are familiar with its features. We are grateful for their
input and time. In this section we summarize some possible lim-
itations of the standard.

The SIP specification provides for “reverse” coefficients to
allow the mapping of sky coordinates to pixels to be performed
rapidly, without the need for iterative inversion techniques. The
Spitzer mosaicking tool MOPEX relies on the reverse coeffi-
cients for its default interpolation mode, as it maps outputpixel
corners back to the original distorted images. The reverse poly-
nomial is, however, only an approximation and in general can-
not be the exact inverse of the forward polynomial. As a re-
sult mapping a pixel to celestial coordinates and back does not
yield back precisely the original coordinates. For example, in
the IRAC channel 4 distortion listed above, mapping pixel co-
ordinate (1.0,1.0) to the sky and back leads to a difference of
about 0.014 pixels. It can be argued that such a difference is neg-
ligible for practical applications, and that distortions may not
be measured to such accuracy anyway. Another drawback to the
reverse coefficients is that they violate the principle of storing
only the minimum information necessary in the FITS header –
the forward coefficients could be considered to contain all the
necessary information.

A better approach, in hindsight, might have been to not in-
clude the “reverse” coefficients at all, but instead to invert the
forward solution using an interative technique. For an arbitrary
polynomial, it might not be possible to guarantee convergence
of the inversion. For practical applications to distorted images,
however, the size of the corrections are small and inversionwill
likely work well. It should be noted that the reverse coefficients
for the examples given above are very nearly the same as the
forward coefficients with the sign reversed. The starting points
for any iterative inversion are well-determined and the solution
should be reached rapidly.

Based on these considerations, use of the reverse coefficients
should be considered optional although this may create problems
for existing tools such as WCSTools which have already been
coded to use the reverse coefficients.

Another area of concern concerns possible loss of accuracy
in the calculations under some circumstances. In the case oflarge
pixel coordinate values, and high order polynomials, the terms
can grow large. In some cases it is necessary to take the dif-
ferences between polynomial terms that are much larger than
the final result — a classic case where accuracy can be lost. It
clearly helps significantly to use double precision floatingpoint
numbers and hence around 15 significant figures of accuracy.
We would strongly discourage the use of single precision butit
remains a question for software developers and is not imposed
by the convention itself. A sufficient number of significant digits
should be used to specify the distortion coefficients in the FITS
header. As shown in the examples above, the high-order coeffi-

cients become small and must be specified in scientific notation
with large negative exponents.

An alternative solution to avoid loss of accuracy, or over-
flow or underflow problems, is to introduce a scaling term so
that pixel values are scaled into the range−1 to+1. This could
quite easily be done with by adding an optional keyword, that
defaults to 1.0 in order not to invalidate existing headers.

Another comment we have received is that the form of the
keywords is relatively simple, so much so that someone else
might accidentally use one of the distortion keywords for an-
other purpose elsewhere in the FITS header, thereby corrupting
the distortion information.

3.8. Possible New Features

We have also asked for views about possible extensions to SIP.
One limitation of this current convention is that only regular

polynomials are allowed – not Chebyshev or Lagrange for ex-
ample. As a result higher-order polynomials can diverge at the
edges of images where they are less well constrained and this
could cause difficulties under some conditions. However, adding
these would be significant work and we do not think it should be
considered at present. If these were implemented, we would rec-
ommend a different three-letter suffix for CTYPE1 andCTYPE2,
or some other means to maintain a distinction from the simple
polynomials currently used.

In the current convention the distortion origin is forced to
be at(CRPIX1, CRPIX2). However, in many cases it is natural
for the distortion center to lie at a different location. It has been
suggested that additional keywords could be used to specifythe
distortion center, and if these are not present then the default
of (CRPIX1, CRPIX2) is used. Although the introduction of a
different center may have advantages there are also significant
drawbacks and some of the simplicity of the original scheme is
lost. In particular, theCD matrix would no longer contain a cor-
rect description of pixel scales, skew and orientation at the point
(CRPIX1, CRPIX2). We note that it is always possible to ex-
actly shift the distortion origin to(CRPIX1, CRPIX2) with the
result as a polynomial of the same order, although it is possible
in extreme cases that this will result in much larger terms and
possible consequent accuracy loss.

3.9. Concluding Remarks

The SIP convention has proved to be applicable to many imaging
situations and its simplicity has made implementation and use
easy. Many people feel it is the natural solution without excess
detail. However, this simplicity naturally limits its generality and
largely restricts the applicability of SIP to simple cameras, un-
like the much more extensive general proposals in FITS Paper4
that include multi-dimensional support that cover far morecases
beyond just simple imaging.

3.10. Acknowledgments

We thank Mehrdad Moshir and Bob Narron for their contribu-
tions to the development of the SIP keywords. We are gratefulto
Mark Calabretta for significant comments and suggestions, and
Jane Morrison for discussions of MIPS distortions and the CD
matrix. We thank Doug Mink, Wayne Landsman, David Berry,
and Booth Hartley for implementing SIP in their software.

6

We are also very grateful to all those who provided help-
ful replies to our requests for comments. In particular Stefano
Casertano, Jane Morrison, Emmanuel Bertin, David Berry and
Mark Lacy provided much interesting feedback.

The work carried out at the Spitzer Science Center was
funded by NASA under contract 1407 to the California Institute
of Technology and the Jet Propulsion Laboratory.

3.11. References

Calabretta, M.R., & Greisen, E.W. 2002, A&A, 395, 1077
(Paper II).

Fazio, G., et al. 2004, ApJ Suppl., 154, 10.
Fruchter, A.S. & Hook, R.N. 2002, PASP, 114, 144
Greisen, E.W., & Calabretta, M.R. 2002, A&A, 395, 1061

(Paper I).
Laity, A.C., Anagnostou, N., Berriman, B., Good, J.C.,

Jacob, J.C., & Katz, D.S. 2005, “Montage: An Astronomical
Image Mosaic Service for the NVO,” in “Astronomical Data
Analysis Software and Systems XIV ASP Conference Series”,
ed. by P. Shopbell, M. Britton, and R. Ebert (San Francisco:
Astronomical Society of the Pacific), vol 347, p. 34.

Makovoz, D., & Khan, I. 2005, “Mosaicking with MOPEX,”,
in “Astronomical Data Analysis Software and Systems XIV ASP
Conference Series”, ed. by P. Shopbell, M. Britton, and R. Ebert
(San Francisco: Astronomical Society of the Pacific), vol 347, p.
81.

Morrison, J.E., Stamper, B.L., & Shupe, D.L. 2007,
“Correcting MIPS Spitzer Images for Distortion,” in
“Astronomical Data Analysis Software and Systems XVI
ASP Conference Series,”, ed. by R.A. Shaw, F. Hill and D.J.
Bell, Vol 376, p. 433.

Rieke, G., et al. 2004, ApJ Supp, 154, 25.
Shupe, D.L., Moshir, M., Li, J., Makovoz, D., Narron, R.,

& Hook, R.N. 2005, “The SIP Convention for Representing
Distortion in FITS Image Headers”, in “Astronomical Data
Analysis Software and Systems XIV ASP Conference Series”,
ed. by P. Shopbell, M. Britton, and R. Ebert (San Francisco:
Astronomical Society of the Pacific), vol 347, p. 491.

7

4. A Convention for preallocating header space for
FITS keywords

4.1. Preface

This convention has been supported by the CFITSIO library
since approximately 1996 and has primarily been used within
the FITS data files produced by high energy astrophysics mis-
sions supported by the HEASARC.

4.2. Background

The ASCII header in every FITS HDU (Header Data Unit) con-
sists of 1 or more 2880-byte blocks, each of which can hold 36
80-byte keyword records. When writing a new keyword to the
header of a FITS file, if the header is full (i.e., the last header
block already contains 36 header records, including the END
keyword) then it becomes necessary to insert a new 2880-byte
FITS block at the end of the header. This in turn requires that
any data in the FITS file following the header be shifted down
by 2880 bytes in the file to make room for the inserted block.
This rewriting operation can cause significant data processing
inefficiencies when dealing with large FITS files.

One way to circumvent this problem is to preallocate enough
space in the header when the FITS HDU is created to hold the
anticipated number of keywords that may be written during later
processing of the FITS file. This document describes a simple
convention for creating an arbitrarily large amount of reserve
space in the header that can be used when writing new keywords.

4.3. Convention details

Under this convention, any sequence of one or more completely
blank keyword records (consisting of 80 ASCII space charac-
ters) immediately preceding the END keyword are interpreted
as non-significant scratch space, which can be reused when new
keywords are written. Thefunctional end of the header is defined
as located at the beginning of this scratch space area, whichis
where each new keyword record is written. In the event that all
the scratch space becomes filled with keywords, then the tradi-
tional procedure of shifting the END keyword down one space
in the header to make room for the new keyword should be fol-
lowed.

In practice, it is usually most convenient to write the desired
number of blank keywords into the header just prior to writing
the END keyword itself, before writing any actual data records to
the FITS HDU. Software that recognizes this convention should
then reuse these blank records when writing new keywords to the
header. This eliminates the inefficiencies associates with having
to insert a new FITS block into an existing FITS file to make
room for more keywords. Even if some of this reserved header
space remains unused (note that space for 100 keywords only
occupies 8K of disk space), this is usually insignificant when
dealing with large FITS files.

It should be noted that if a FITS file is processed by software
that does not support this convention, then new keywords maybe
written at the location of the END keyword (i.e.,after the blank
keyword records). This will make the blank keywords unavail-
able for future use by software that does support this convention
and will create what appears to be a gap of blank header key-
words in the header. For this reason it may be safest to use this
convention on FITS files that are created and processed within a

controlled environment where all the software is known to sup-
port this convention

8

5. TNX World Coordinate System

5.1. Preface

This convention was submitted to the registry in September 2009
by Doug Tody, Lindsey Davis, and Frank Valdes. The TNX con-
vention is currently used in the FITS files produced by NOAO
that are taken with a variety of different imaging instruments in-
cluding MOSAIC and NEWFIRM since 1998.

[This document is copied from iraf.net <http://iraf.net/irafdocs/tnx.php>

The TNX World Coordinate System is a non-standard system for evaluating

celestial coordinates from the image pixel coordinates. It follows the

the FITS conventions for undistorted tangent plane projections but adds

a non-linear distortion term to the evaluation. This discussion

concentrates on the non-linear extension and assumes the reader

understands the FITS WCS conventions including applying a tangent plane

projection. The reference for the FITS WCS standard for undistorted

celestial coordinates systems is Representations of celestial

coordinates in FITS

<http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2002A%26A...395.1077C&db_key=AST&high=3db47576cf14130

Calabretta, M. R., and Greisen, E. W., Astronomy & Astrophysics, *395*,

1077-1122, 2002. (PDF

<http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2002A%26A...395.1077C&link_type=ARTICLE&db_key=AST>,

HTML

<http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2002A%26A...395.1077C&link_type=EJOURNAL&db_key=AST>

The TNX World Coordinate System projection has a FITS keyword

representation as illustrated in figure 1.

Figure 1: Sample header with TNX WCS projection

WCSASTRM= ’ct4m.19990714T012701 (USNO-K V) by F. Valdes 1999-08-02’ / WCS Source

WCSDIM = 2 / WCS dimensionality

CTYPE1 = ’RA---TNX’ / Coordinate type

CTYPE2 = ’DEC--TNX’ / Coordinate type

CRVAL1 = 310.08145293602507 / Coordinate reference value

CRVAL2 = 20.663666538998399 / Coordinate reference value

CRPIX1 = 4268.3258 / Coordinate reference pixel

CRPIX2 = 2256.2481 / Coordinate reference pixel

CD1_1 = -6.8295807e-08 / Coordinate matrix

CD2_1 = 7.3313414e-05 / Coordinate matrix

CD1_2 = 7.374228e-05 / Coordinate matrix

CD2_2 = -1.1927219e-06 / Coordinate matrix

WAT0_001= ’system=image’ / Coordinate system

WAT1_001= ’wtype=tnx axtype=ra lngcor = "3. 4. 4. 2. -0.3171856965643079 -0.015’

WAT1_002= ’0652479325533 -0.3126038394350166 -0.1511955040928311 0.002318100364’

WAT1_003= ’838772 0.01749134520424022 -0.01082784423020123 -0.1387962673564234 ’

WAT1_004= ’-4.307309762939804E-4 0.009069288008295441 0.002875265278754504 -0.0’

WAT1_005= ’4487658756007625 -0.1058043162287004 -0.0686214765375767 " ’

WAT2_001= ’wtype=tnx axtype=dec latcor = "3. 4. 4. 2. -0.3171856965643079 -0.01’

WAT2_002= ’50652479325533 -0.3126038394350166 -0.1511955040928311 0.00553481957’

WAT2_003= ’8784082 0.01258790793029932 0.01016780085575339 0.01541083298696018 ’

WAT2_004= ’0.03531979587941362 0.0150096457430599 -0.1086479352595234 0.0399806’

WAT2_005= ’086902122 0.02341002785565408 -0.07773808393244387 " ’

The WCSASTRM keyword is just for documentation. The WCSDIM keyword will

always be 2. That this is a TNX projection is indicated by the CTYPE

keywords. These keywords also indicate that the first image axis

corresponds to RA and the second to DEC.

The TNX projection is evaluated as follows.

1. Compute the first order standard coordinates xi and eta

linear part of the solution stored in CRPIX and the CD

xi = CD1_1 * (x - CRPIX1) + CD1_2 * (y - CRPIX2)

eta = CD2_1 * (x - CRPIX1) + CD2_2 * (y - CRPIX2)

2. Add the non-linear part of the projection using the coefficients

the WAT keywords as described below.

xi’ = xi + lngcor (xi, eta)

eta’ = eta + latcor (xi, eta)

3. Apply the standard tangent plane projection to xi’ amd

the CRVAL values as the tangent point to get the RA and

degrees. Note that the units of xi, eta, lngcor, and latcor

degrees.

The non-linear functions lngcor(xi,eta) and latcor(xi,eta)

polynomial functions with coefficients stored as FITS keywords

indexed WATj_nnn keywords. The j refers to the image axis

give a sequence number. The cards for a particular image axis

by the sequence number and then concatenated together into

string. Take care not to add spaces between the concatenated

since the coefficients may be split across strings.

The long string for each image axis is composed of a set of

keyword/value pairs where the value is quoted if it contains

Figure 2 shows the how the WAT keywords in figure 1 would

into parameters and coefficients.

Figure 2: Decomposing the WAT keywords from figure

AXIS 1 AXIS 2

---------------------------- ------------------------

wtype=tnx wtype=tnx

axtype=ra axtype=dec

lngcor = latcor =

3. 3.

4. 4.

4. 4.

2. 2.

-0.3171856965643079 -0.3171856965643079

-0.0150652479325533 -0.0150652479325533

-0.3126038394350166 -0.3126038394350166

-0.1511955040928311 -0.1511955040928311

0.002318100364838772 0.005534819578784082

0.01749134520424022 0.01258790793029932

-0.01082784423020123 0.01016780085575339

-0.1387962673564234 0.01541083298696018

-4.307309762939804E-4 0.03531979587941362

0.009069288008295441 0.0150096457430599

0.002875265278754504 -0.1086479352595234

-0.04487658756007625 0.0399806086902122

-0.1058043162287004 0.02341002785565408

-0.0686214765375767 -0.07773808393244387

The list of coefficients are interpreted as follows.

9

1. The first number is the function type encoded as 1=chebyshev,

2=legendre, 3=polynomial. The example has a function of type 3 which

is the simple polynomial.

2. The next two numbers represent the "order" of the function in xi and

eta. The order is the one less than the highest polynomial power.

The powers are represented below by m and n such at m = 0 to

xiorder-1 and n = 0 to etaorder-1. In the example the orders are 4

which means cubic polynomials (m=0 to 3 and n=0 to 3).

3. The next (fourth) number specifies the type of cross-terms encoded

as 0=no cross-terms, 1=full cross-terms, 2=half-cross terms. The

cross-terms are terms of xiˆm*etaˆn where m and n are non-zero. Full

cross-terms mean that both m and n will go to the their maximum

values independently while half-cross terms mean that m + n will

only go to the maximum of xiorder-1 and etaorder-1.

4. The next 4 numbers describe the region of validity of the fits in xi

and eta space, e.g. ximin, ximax, etamin, etamax. They are used to

compute normalized values for xi and eta used in the chebyshev and

legendre polynomial functions:

xin = (2 * xi - (ximax + ximin)) / (ximax - ximin)

etan = (2 * eta - (etamax + etamin)) / (etamax - etamin)

5. The remaining terms are the coefficients of the polynomial terms.

The functions are evaluated by summing polynomial terms Pmn(xi,eta)

multiplied by the coefficients Cmn as

lngcor(xi,eta) = sum (Cmn * Pmn(xi,eta))

latcor(xi,eta) = sum (Cmn * Pmn(xi,eta))

Representing the coeffients as Cmn for the polynomials Pmn, where m

and n are the powers of xi and eta, they are ordered as

C00

C10

C20

C30

...

C01

C11

C21

C31

...

C02

C12

C22

C32

...

C03

C13

C23

C33

...

In the example with the half cross-terms and orders of 4 the ten

coefficients would be C00, C10, C20, C30, C01, C11, C21, C02, C12,

and C03.

The polynomials Pmn are defined below. The chebyshev and legendre

polynomials are define iteratively as functions of the normalized

coordinates defined earlier.

Pmn = xi ** m * eta ** n (polynomial)

Pmn = Pm(xin) * Pn(etan) (chebyshev)

P0(xin) = 1.0

P1(xin) = xin

Pm+1(xin) = 2.0 * xin * Pm(xin) - Pm-1(xin)

P0(etan) = 1.0

P1(etan) = etan

Pn+1(etan) = 2.0 * etan * Pn(etan) - Pn-1(etan)

Pmn = Pm(xin) * Pn(etan) (legendgre)

P0(xin) = 1.0

P1(xin) = xin

Pm+1(xin) = ((2m+1) * xin * Pm(xin) - m * Pm-1(xin))/

P0(etan) = 1.0

P1(etan) = etan

Pn+1(etan) = ((2n+1) * etan * Pn(etan) - n * Pn-1(etan))/

In the example with with a simple polynomial the functions

given as follows.

lngcor/latcor = C00

+ C10 * xi + C20*xiˆ2 + C30 * xiˆ3

+ C01 * eta + C02*etaˆ2 + C03 * etaˆ3

+ C11 * xi*eta + C21 * xiˆ2*eta + C12 * xi*etaˆ2

10

6. TPV World Coordinate System

6.1. Preface

This convention was submitted to the registry in September 2011
by Francisco Valdes.

The TPV World Coordinate System is a non-standard convention following

the rules of the WCS standard. It builds on the standard TAN projection

by adding a general polynomial distortion correction. The description

here covers the application of the distortion function and assumes the

reader understands the FITS WCS rules including applying the linear

transformation to intermediate coordinates and applying a tangent plane

projection to the distortion corrected intermediate coordinates. The

reference for the FITS WCS standard for undistorted celestial coordinate

systems is Representations of celestial coordinates in FITS

<http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2002A%26A...395.1077C&db_key=AST&high=3db47576cf14130

Calabretta, M. R., and Greisen, E. W., Astronomy & Astrophysics, *395*,

1077-1122, 2002. (PDF

<http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2002A%26A...395.1077C&link_type=ARTICLE&db_key=AST>,

HTML

<http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2002A%26A...395.1077C&link_type=EJOURNAL&db_key=AST>

Reprints are available from the author’s web site

<http://www.atnf.csiro.au/˜mcalabre/> in PDF

<http://www.atnf.csiro.au/people/mcalabre/WCS/ccs.pdf> format.

Historically this WCS derives from an earlier proposal by Calabretta and

Greisen <http://astromatic.net/forum/attachment.php?aid=220> in a draft

for the celestial coordinates paper. In that proposal the TAN projection

would be extended with the optional distortion polynomial. It would be

up to the code to identify the presence of the PV keywords and apply the

distortion. Since the final standard does not provide for a distortion

to the tangent plan projection, the proposal is recast by simply

defining a new WCS identifier and publishing it as the convention given

here.

Evaluation Steps

The TPV projection is evaluated as follows.

1. Compute the first order standard coordinates xi and eta from the

linear part of the solution stored in CRPIX and the CD matrix.

xi = CD1_1 * (x - CRPIX1) + CD1_2 * (y - CRPIX2)

eta = CD2_1 * (x - CRPIX1) + CD2_2 * (y - CRPIX2)

2. Apply the distortion transformation using the coefficients in the PV

keywords as described below.

xi’ = f_xi (xi, eta)

eta’ = f_eta (xi, eta)

3. Apply the tangent plane projection to xi’ and eta’ as described in

/Calabretta and Greisen/ . The reference tangent point given by the

CRVAL values lead to the final RA and DEC in degrees. Note that the

units of xi, eta, f_xi, and f_eta are also degrees.

Distortion Functions

The distortion functions shown as f_xi and f_eta above are defined as

follows where the variable r is sqrt(xiˆ2+etaˆ2). In this

there are only odd powers of r.

xi’ = PV1_0 + PV1_1 * xi + PV1_2 * eta + PV1_3 * r +

PV1_4 * xiˆ2 + PV1_5 * xi * eta + PV1_6 * etaˆ2

PV1_7 * xiˆ3 + PV1_8 * xiˆ2 * eta + PV1_9 * xi

PV1_12 * xiˆ4 + PV1_13 * xiˆ3 * eta + PV1_14 *

PV1_17 * xiˆ5 + PV1_18 * xiˆ4 * eta + PV1_19 * xiˆ3 * etaˆ2

PV1_20 * xiˆ2 * etaˆ3 + PV1_21 * xi * etaˆ4 + PV1_22 *

PV1_24 * xiˆ6 + PV1_25 * xiˆ5 * eta + PV1_26 *

PV1_28 * xiˆ2 * etaˆ4 + PV1_29 * xi * etaˆ5 + PV1_30 *

PV1_31 * xiˆ7 + PV1_32 * xiˆ6 * eta + PV1_33 *

PV1_35 * xiˆ3 * etaˆ4 + PV1_36 * xiˆ2 * etaˆ5 + PV1_37

eta’ = PV2_0 + PV2_1 * eta + PV2_2 * xi + PV2_3 * r +

PV2_4 * etaˆ2 + PV2_5 * eta * xi + PV2_6 * xiˆ2

PV2_7 * etaˆ3 + PV2_8 * etaˆ2 * xi + PV2_9 * eta

PV2_12 * etaˆ4 + PV2_13 * etaˆ3 * xi + PV2_14 *

PV2_17 * etaˆ5 + PV2_18 * etaˆ4 * xi + PV2_19 * etaˆ3 *

PV2_20 * etaˆ2 * xiˆ3 + PV2_21 * eta * xiˆ4 + PV2_22 *

PV2_24 * etaˆ6 + PV2_25 * etaˆ5 * xi + PV2_26 *

PV2_28 * etaˆ2 * xiˆ4 + PV2_29 * eta * xiˆ5 + PV2_30 *

PV2_31 * etaˆ7 + PV2_32 * etaˆ6 * xi + PV2_33 *

PV2_35 * etaˆ3 * xiˆ4 + PV2_36 * etaˆ2 * xiˆ5 + PV2_37

Note that missing PV keywords default to 0 except for PV1_1

which default to 1. With these defaults if there are no PV

transformation is the identity and the TPV WCS is equivalent

standard TAN projection. Also the defaults mean that the provider

only include the coefficients to the order desired. Similarly,

function may use only terms in powers of r which then mimics

standard ZPN projection.

This convention only defines coefficients up to 39 corresponding

maximum polynomial order of 7.

To implement the inverse transformation requires inverting

distortion functions. But using a standard iterative numerical

based on the first derivative of the functions is not difficult.

derivatives of these functions are straightforward to express

11

7. ZPX World Coordinate System

7.1. Preface

This convention was submitted to the registry in September 2011
by Frank Valdes.

The ZPX World Coordinate System is a non-standard system for evaluating

celestial coordinates from the image pixel coordinates. It follows the

the FITS conventions for a zenithal polynomial projection (ZPN) but adds

an additional two-dimensional polynomial distortion term to the

evaluation. This discussion concentrates on the non-ZPN distortion

extension and assumes the reader understands the FITS WCS conventions

including applying a zenithal polynomial projection. The reference for

the FITS WCS standard for undistorted celestial coordinates systems is

Representations of celestial coordinates in FITS

<http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2002A%26A...395.1077C&db_key=AST&high=3db47576cf14130

Calabretta, M. R., and Greisen, E. W., Astronomy & Astrophysics, *395*,

1077-1122, 2002. (PDF

<http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2002A%26A...395.1077C&link_type=ARTICLE&db_key=AST>,

HTML

<http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2002A%26A...395.1077C&link_type=EJOURNAL&db_key=AST>

Reprints are available from the author’s web site

<http://www.atnf.csiro.au/˜mcalabre/> in PDF

<http://www.atnf.csiro.au/people/mcalabre/WCS/ccs.pdf> format.

One thing to note is that generally the radial "pin-cushion" distortion

included in the ZPN projection is generally fixed and possibly defined

by known optical design terms. For NOAO Mosaic data, each WCS

calibration exposure has different distortion terms from fitting the

refraction and other small effects but the calibration does not change

the radial polynomial coefficients.

The ZPN World Coordinate System projection has a FITS keyword

representation as illustrated in figure 1.

Figure 1: Sample header with ZPX WCS projection

WCSAXES = 2 / Number of WCS axes

CTYPE1 = ’RA---ZPX’ / Coordinate type

CTYPE2 = ’DEC--ZPX’ / Coordinate type

CRVAL1 = 320.687374999995 / Coordinate reference value

CRVAL2 = 36.908555555556 / Coordinate reference value

CRPIX1 = 4167.56175625891 / Coordinate reference pixel

CRPIX2 = 4120.25894749731 / Coordinate reference pixel

CD1_1 = -5.2588308681025E-8 / Coordinate matrix

CD2_1 = -7.2772379161132E-5 / Coordinate matrix

CD1_2 = -7.2753930850119E-5 / Coordinate matrix

CD2_2 = -1.8637632244742E-8 / Coordinate matrix

WAT0_001= ’system=image’ / Coordinate system

WAT1_001= ’wtype=zpx axtype=ra projp0=0. projp1=1. projp2=0. projp3=337.74 proj’

WAT1_002= ’p4=0. projp5=632052. lngcor = "3. 3. 3. 2. 0.001876397956622823 0.29’

WAT1_003= ’99113930557312 0.1542460039112511 0.3032873851581314 1.9247409545894’

WAT1_004= ’95E-5 -1.348328290485618E-5 1.414186703253352E-4 -1.792784764381400E’

WAT1_005= ’-4 -1.276226238774833E-4 4.339217671825231E-4 "’

WAT2_001= ’wtype=zpx axtype=dec projp0=0. projp1=1. projp2=0. projp3=337.74 pro’

WAT2_002= ’jp4=0. projp5=632052. latcor = "3. 3. 3. 2. 0.001876397956622823 0.2’

WAT2_003= ’999113930557312 0.1542460039112511 0.3032873851581314 9.963957331149’

WAT2_004= ’402E-5 -1.378185066830135E-4 1.559892401479664E-4 -8.280442729203771’

WAT2_005= ’E-4 3.966701903249366E-4 0.001678960379199465 "’

The WCSAXES keyword (possible seen as WCSDIM) will always

this is a ZPX projection is indicated by the CTYPE keywords.

keywords also indicate that the first image axis corresponds

the second to DEC.

The ZPX projection is evaluated as follows.

1. Compute the first order standard coordinates xi and eta

linear part of the solution stored in CRPIX and the CD

xi = CD1_1 * (x - CRPIX1) + CD1_2 * (y - CRPIX2)

eta = CD2_1 * (x - CRPIX1) + CD2_2 * (y - CRPIX2)

2. Add the non-linear part of the projection using the coefficients

the WAT keywords as described below.

xi’ = xi + lngcor (xi, eta)

eta’ = eta + latcor (xi, eta)

3. Apply the zenithal polynomial projection to xi’ and eta’

described in /Calabretta and Greisen/ where the P/m/ coefficients

that paper are are given by the projp/m/ coefficients

keywords. The reference tangent point given by the CRVAL

to the final RA and DEC in degrees. Note that the units

lngcor, and latcor are also degrees.

The coefficients for the zenithal polynomial (the P/m/) and

non-linear polynomial distortion functions lngcor(xi,eta)

latcor(xi,eta) are stored as FITS keywords under the indexed

keywords. The j refers to the image axis and the nnn give

number. The cards for a particular image axis are sorted by

number and then concatenated together into one long string.

not to add spaces between the concatenated strings since the

coefficients may be split across strings.

The long string for each image axis is composed of a set of

keyword/value pairs where the value is quoted if it contains

Figure 2 shows how the WAT keywords in figure 1 would be decomposed

parameters and coefficients.

Figure 2: Decomposing the WAT keywords from figure

AXIS 1 AXIS 2

---------------------------- ------------------------

wtype=zpx wtype=zpx

axtype=ra axtype=dec

projp0=0. projp0=0.

projp1=1. projp1=1.

projp2=0. projp2=0.

projp3=337.74 projp3=337.74

projp4=0. projp4=0.

projp5=632052. projp5=632052.

lngcor= latcor=

3. 3.

3. 3.

3. 3.

2. 2.

0.001876397956622823 0.001876397956622823

0.2999113930557312 0.2999113930557312

0.1542460039112511 0.15424600391125

0.3032873851581314 0.3032873851581314

12

1.924740954589495E-5 9.963957331149402E-5

-1.348328290485618E-5 -1.378185066830135E-4

1.414186703253352E-4 1.559892401479664E-4

-1.792784764381400E-4 -8.280442729203771E-4

-1.276226238774833E-4 3.966701903249366E-4

4.339217671825231E-4 0.001678960379199465

The list of coefficients are interpreted as follows.

1. The first number is the function type encoded as 1=chebyshev,

2=legendre, 3=polynomial. The example has a function of type 3 which

is the simple polynomial.

2. The next two numbers represent the "order" of the function in xi and

eta. The order is the one less than the highest polynomial power.

The powers are represented below by m and n such at m = 0 to

xiorder-1 and n = 0 to etaorder-1. In the example the orders are 4

which means cubic polynomials (m=0 to 3 and n=0 to 3).

3. The next (fourth) number specifies the type of cross-terms encoded

as 0=no cross-terms, 1=full cross-terms, 2=half-cross terms. The

cross-terms are terms of xiˆm*etaˆn where m and n are non-zero. Full

cross-terms mean that both m and n will go to the their maximum

values independently while half-cross terms mean that m + n will

only go to the maximum of xiorder-1 and etaorder-1.

4. The next 4 numbers describe the region of validity of the fits in xi

and eta space, e.g. ximin, ximax, etamin, etamax. They are used to

compute normalized values for xi and eta used in the chebyshev and

legendre polynomial functions:

xin = (2 * xi - (ximax + ximin)) / (ximax - ximin)

etan = (2 * eta - (etamax + etamin)) / (etamax - etamin)

5. The remaining terms are the coefficients of the polynomial terms.

The functions are evaluated by summing polynomial terms Pmn(xi,eta)

multiplied by the coefficients Cmn as

lngcor(xi,eta) = sum (Cmn * Pmn(xi,eta))

latcor(xi,eta) = sum (Cmn * Pmn(xi,eta))

Representing the coeffients as Cmn for the polynomials Pmn, where m

and n are the powers of xi and eta, they are ordered as

C00

C10

C20

C30

...

C01

C11

C21

C31

...

C02

C12

C22

C32

...

C03

C13

C23

C33

...

In the example with the half cross-terms and orders of

coefficients would be C00, C10, C20, C30, C01, C11, C21,

and C03.

The polynomials Pmn are defined below. The chebyshev and

polynomials are define iteratively as functions of the

coordinates defined earlier.

Pmn = xi ** m * eta ** n (polynomial)

Pmn = Pm(xin) * Pn(etan) (chebyshev)

P0(xin) = 1.0

P1(xin) = xin

Pm+1(xin) = 2.0 * xin * Pm(xin) - Pm-1(xin)

P0(etan) = 1.0

P1(etan) = etan

Pn+1(etan) = 2.0 * etan * Pn(etan) - Pn-1(etan)

Pmn = Pm(xin) * Pn(etan) (legendgre)

P0(xin) = 1.0

P1(xin) = xin

Pm+1(xin) = ((2m+1) * xin * Pm(xin) - m * Pm-1(xin))/

P0(etan) = 1.0

P1(etan) = etan

Pn+1(etan) = ((2n+1) * etan * Pn(etan) - n * Pn-1(etan))/

In the example with with a simple polynomial the functions

given as follows.

lngcor/latcor = C00

+ C10 * xi + C20*xiˆ2 + C30 * xiˆ3

+ C01 * eta + C02*etaˆ2 + C03 * etaˆ3

+ C11 * xi*eta + C21 * xiˆ2*eta + C12 * xi*etaˆ2

13

8. The FITS Green Bank Keyword Convention

8.1. Preface

This FITS keyword convention was developed at a meeting in
October 1989 at Green Bank, West Virginia to discuss standard
FITS formats for interchange of single dish radio astronomy
data. This convention was originally developed to specifically
address the issue of how to represent World Coordinate System
(WCS) information for images that are stored within a vector
column of a FITS binary table (or what was then called a FITS
‘3-D’ table), but the concept has since been generalized to have
wider applications.

8.2. Original Green Bank Keyword Convention

This keyword convention originally applied to cases where a
FITS binary table contains only a single multidimensional array
field, or where the table contains several array fields, but they all
have the same dimensions. The dimensions of each array column
are defined by the TDIMn keyword, which has the form:

TDIMn = ’(i,j,k,...)’

wheren is the column number of the multidimensional array in
the binary table, andi, j, k, ... are the integer dimensions of the
array, expressed in the same order as in arrays in the Fortranpro-
gramming language. Since the WCS parameters for the images
(e.g.,CTYPEi, CRPIXi, CRVALi, etc.) may have different values in
each row of the table, in general it is necessary to expand these
keywords into table columns, where the column names are the
same as the keyword name. Thus,

– TTYPEn = ’CTYPEi’ means that the name of the physical
coordinate of the axisi in the array contained in the table is
given in columnn of the table.

– TTYPEn = ’CRPIXi’ means that the value of the reference
point for axisi in the array contained in the table is given in
columnn of the table.

– TTYPEn = ’CRVALi’ means that the value of the physical
coordinate for axisi at the reference point in the array con-
tained in the table is given in columnn of the table.

Similarly, any other needed WCS parameters are represented
as additional columns in the table.

In the special case where a WCS parameter has the same
value in every row of the table, it is not necessary to expand the
standard WCS keyword into a column. For example, if every im-
age in the multidimensional array column hasCRPIX1 = 256,
then it is more efficient to represent this with a singleCRPIX1
header keyword, instead of defining aCRPIX1 column, with the
same value of 256 in every row.

It should be noted that this convention pre-dates the devel-
opment of the special forms for the WCS keywords that are
specifically designed for use with images stored in multidimen-
sional array columns in a binary table (e.g. ’iCTYPn’ instead of
’CTYPEn’). Refer to the WCS section of the FITS Standard for
more information about these keywords.

8.3. Generalized Green Bank Keyword Convention

The same principle that is used to expand a WCS keyword into
a table column can be applied to any parameter whose value is
different in each row of the binary table. For example, if the in-
formation given in each row of the table correspond to a different

date, then instead of having a single DATE-OBS keyword in the
header of the table, one could add a column to the table that has
TTYPEn= ’DATE-OBS’ to store the specific date value for each
row. This concept of expanding a keyword into a table column
(or conversely, collapsing a column of identical values into a sin-
gle header keyword) is now generally known as the Green Bank
keyword convention.

14

9. The ESO HIERARCH Keyword Convention

9.1. Preface

This keyword name convention has been used within the FITS
data files produced by ESO since approximately 1990.

9.2. Convention Description

To avoid possible misinterpretations and naming conflicts
for keywords describing data acquisition parameters, ESO
(the European Organization for Astronomical Research in the
Southern Hemisphere) developed a hierarchical keyword con-
vention for this purpose. Under this convention, the FITS key-
word name (bytes 1 through 8 of the keyword record) is
HIERARCH, and byte 9 contains a space character. Since the
HIERARCH keyword does not have the ‘= ’ value indicator in
bytes 9 and 10 of the keyword record, it is in the same class as the
COMMENT and HISTORY keywords that do not have a formal
value. Thus, FITS readers that do not support the HIERARCH
convention, as described in more detail below, should simply in-
terpret bytes 9 through 80 of the keyword record as containing
commentary text.

Under the HIERARCH keyword convention, bytes 10
through 80 of the keyword record contain a series of ASCII
strings, or tokens, that serve to hierarchically classify the key-
word, followed by an equals sign (“=”) which is in turn followed
by the keyword value field. An optional comment field may fol-
low the value field, separated by a slash (“/”) character. The value
and comment fields conform to the rules for free-format key-
words, as defined in the FITS Standard document.

The HIERARCH keyword structure is illustrated below:

HIERARCH token_1 token_2 ... token_n = value / comment

The first token following the HIERARCH keyword name is
the ‘name space’ token, which defines the top level domain of the
following tokens. The name space token has the value “ESO” for
all the hierarchical keywords defined within that organization; a
different unique domain name should be defined by any other or-
ganizations that uses this convention. (Currently, it appears that
ESO is the only organization that uses this convention).

The other tokens following the name space token and preced-
ing the equals sign character define the hierarchical classification
of the keyword. Any number of levels are allowed (as long as
they all fit within the 80-character keyword record), but in prac-
tice, ESO keywords generally have 3 hierarchical levels which
specify the general category, the subsystem, and the parameter
name, respectively. For example, in the following keyword:

HIERARCH ESO TEL FOCU SCALE = 1.489 / (deg/m) Focus length = 5.36"/mm

the domain= ESO, the category= TEL, the subsystem= FOCU,
and the parameter name= SCALE.

Under the ESO implementation of this convention, each to-
ken string that precedes the equals sign must only contain char-
acters that are legal in formal FITS keywords, i.e., the uppercase
letters A through Z, the digits 0 through 9, and the hyphen and
underscore characters. The tokens may, however, be longer than
the 8 character limit of formal FITS keywords.

In some circumstances it may be convenient to map the
hierarchical keywords into program variable names by con-
catenating the hierarchical tokens together, separating them

with the full stop character (“.”). For example, the hierarchi-
cal keyword shown above corresponds to the variable name
ESO.TEL.FOCU.SCALE while the following keyword,

HIERARCH ESO INS OPTI-3 ID = ’ESO#427 ’ / Optical element

corresponds to the variable ESO.INS.OPTI-3.ID. The re-
verse translation is applied when converting such variables into
FITS HIERARCH keywords,

This hierarchical structure provides a convenient and clear
way to separate information concerning different subsystems.
The definition of FITS keywords used by ESO for data acqui-
sition can be found in the Data Interface Control Document
(http://archive.eso.org/dicb).This document also gives a full def-
inition of the hierarchical keywords in the ESO name space.

15

10. The CONTINUE Long String Keyword
Convention

10.1. Preface

This conventions for continuing the value of a character string
keyword over multiple header records was originally developed
by the HEASARC in 1994. It has been extensively used within
the FITS data files produced by numerous high energy astro-
physics missions.

10.2. Introduction

TheCONTINUE long string keyword convention may be used to
assign a character string value to a FITS keyword that is longer
than the 68-character limit for the value of a single FITS key-
word. Under this convention, the long string value is divided
into multiple substrings, each of which is no longer than 67
characters in length. The first substring is written as the value
of the user-specified keyword, and the the remaining substrings
are written to a sequence of keywords that all have the keyword
nameCONTINUE.

10.3. Detailed Syntax of the Convention

The following steps should be taken when writing long string
keyword values using this convention:

1. Divide the long string value into a sequence of smaller sub-
strings, each of which is no longer than 67 characters in
length. (Note that if the string contains any literal single
quote characters, then these must be represented as a pair
of single quote characters in the FITS keyword value, and
these 2 characters must both be contained within a single
substring).

2. Append an ampersand character (‘&’) to the end of each sub-
string, except for the last substring. This character serves as
a flag to FITS reading software that this string valuemay be
continued on the following keyword in the header.

3. Enclose each substring with single quote characters. Non-
significant space characters may occur between the amper-
sand character and the closing quote character.

4. Write the first substring as the value of the user-specified
keyword.

5. Write each subsequent substring, in order, to a series of key-
words that all have the nameCONTINUE in bytes 1 through 8
and have space characters in bytes 9 and 10 of the keyword
record. The substring may be located anywhere in bytes 11
through 80 of the keyword record and may be preceded by
non-significant space characters starting in byte 11. A com-
ment string may follow the substring; if present the com-
ment string must be separated from the substring by at least
1 space character followed by a forward slash character (‘/’).

An example of this long string keyword convention is shown
below:

SVALUE = ’This is a long string value &’

CONTINUE ’extending& ’

CONTINUE ’ over 3 lines.’

This example is equivalent to the following single keyword:

SVALUE = ’This is a long string value extending over 3 lines.’

FITS reading software that supports this convention should
take the following steps when reading a string-valued keyword:

1. Test if the last non-space character in the keyword value
string is an ‘&’ character. If true, then the keyword value
may be continued on the next keyword record in the FITS
header, if the following conditions are true:
– the next keyword in the header has the nameCONTINUE,

and
– bytes 9 and 10 of the keyword contain spaces (no ‘=’ in

byte 9), and
– bytes 11 through 80 contain a character string enclosed

in single quote characters, optionally preceded and fol-
lowed by space characters, and optionally followed by a
forward slash character and a comment string,

2. If all these conditions are true, then the character string on
this CONTINUE keyword should be appended onto the char-
acter string from the previous keyword(s), after first deleting
the ‘&’ character from the previous string.

3. Repeat steps 1 and 2 to continue assembling the long key-
word value until the required conditions are no longer true.

The following additional points regarding this long string
keyword convention should also be noted:

– If a string keyword value ends with the ‘&’ character, but is
not immediately followed by a conformingCONTINUE key-
word, then the ‘&’ character should be considered as the lit-
eral last character in the string.

– If a FITS reader encounters aCONTINUE keyword that is not
preceded by a string keyword (or anotherCONTINUE key-
word) whose value string ends with the ‘&’ character, then
thatCONTINUE keyword should be ignored (i.e., it should be
interpreted the same as aCOMMENT keyword).
The following example (in which aMAXVOLT keyword has
somehow been inserted between theSVALUE keyword and
it’s continuation keyword) illustrates both of the above con-
ditions:

SVALUE = ’This is a long string value &’

MAXVOLT = 12.5

CONTINUE ’continued over 3 lines.’

Because the requirements of the CONTINUE convention
are not met in this case, FITS readers should interpret the
SVALUE keyword as a simple string-valued keyword, in-
cluding the final ‘&’ character in the value string, and the
‘orphaned’ CONTINUE keyword should be treated like a
COMMENT keyword

– FITS readers that do not support this convention should treat
anyCONTINUE keywords (which have no value indicator in
byte 9 and hence have no formally defined value) in the same
way asCOMMENT keywords.

– This convention isnot recommended for use with reserved
or mandatory FITS keywords (e.g.,TTYPEn or EXTNAME, or
other commonly used keywords because of the likelihood
of confusion by software applications that do not support
this convention. It is recommended that this convention only
be used for new application-specific keywords, the values of
which are not critical to the general interpretation or under-
standing of the contents of the FITS file.

16

10.4. LONGSTR Keyword

It is recommended that the following keywords be added to the
header of any HDU that uses this long string convention:

LONGSTRN= ’OGIP 1.0’ / The OGIP long string convention may be used.

COMMENT This FITS file may contain long string keyword values that are

COMMENT continued over multiple keywords. This convention uses the ’&’

COMMENT character at the end of a string which is then continued

COMMENT on subsequent keywords whose name = ’CONTINUE’.

The presence of theLONGSTRN keyword serves to indicate
that long string keywords may be present in the FITS file. The
value of this keyword gives the name and version number of
the specific convention that is used, which in this case is the
OGIP (Office of Guest Investigator Programs, at the HEASARC)
long string convention, version 1.0. The value of this keyword is
a string so that it may be used to give the name of any other
convention that the FITS community might adopt.

17

11. Keywords for Describing the Minimum and
Maximum Values in Columns of FITS Tables

11.1. Preface

This convention was develop by the HEASARC in 1993 to de-
scribe the minimum and maximum values in columns of a FITS
ASCII or binary table. It has been extensively used in particular
within the FITS data files produced by many high energy astro-
physics missions.

11.2. Keyword Definitions

The following 4 optional keywords may be used to describe the
minimum and maximum values in columns of a FITS ASCII or
binary table:

– TDMINn Keyword: The value field shall contain a number
giving the minimum physical value contained in column n
of the table. This keyword is analogous to the DATAMIN
keyword that is defined in the FITS standard for use with
FITS images.

– TDMAXn Keyword: The value field shall contain a number
giving the maximum physical value contained in column n
of the table. This keyword is analogous to the DATAMAX
keyword that is defined in the FITS standard for use with
FITS images.

– TLMINn Keyword: The value field shall contain a num-
ber giving the minimum legally defined physical value that
might be contained in column n of the table.

– TLMAXn Keyword: The value field shall contain a num-
ber giving the maximum legally defined physical value that
might be contained in column n of the table.

The following conventions should be followed in the use of
these keywords:

– The ’physical value’ is defined as the value after applying the
TSCALn and TZEROn linear scaling keywords, if present.

– These keywords are not applicable to columns containing
ASCII strings or logical data.

– These keywords should have the same data type as the phys-
ical values in the associated column (either an integer or a
floating point number).

– These keywords apply to all the elements of a vector column.
– Any undefined elements (or any other IEEE special values in

the case of floating point columns in binary tables) should be
excluded when determining the value of these keywords.

– The TLMINn and TLMAXn keywords define the allowed
legal range of the column values; there is no requirement that
the column actually contain any or all of the allowed values.

– It is permissible to have values in the column that are less
than TLMINn or greater than TLMAXn; the interpretation
of any such out-of-range column elements is not defined by
this convention.

– If TDMINn is greater than TDMAXn, or TLMINn is greater
than TLMAXn, then this should be taken to mean that the
pair of keywords are undefined.

11.3. Examples

These keywords are commonly used in event list tables in which
each row of the table describes an event, such as the measured

arrival time, position, and/or energy of a detected photon. For
example, if a particular CCD photon counting detector is 512by
384 pixels in size, then the location of each photon in the ’chip’
coordinate system would have an X coordinate ranging from 1
to 512 and a Y coordinate ranging from 1 to 384. Other coordi-
nate frames could also be defined, such as a ’detector’ coordinate
system which might be defined so that the origin is centered on
the chip. The FITS header keywords appropriate for this caseare
shown below:

XTENSION= ’BINTABLE’ / binary table extension

BITPIX = 8 / 8-bit bytes

NAXIS = 2 / 2-dimensional binary table

NAXIS1 = 16 / width of table in bytes

NAXIS2 = 34803 / number of rows/events

PCOUNT = 0 / size of special data area

GCOUNT = 1 / one data group (required

TFIELDS = 4 / number of columns in each

EXTNAME = ’EVENTS ’ / name of this binary table

TTYPE1 = ’CHIPX ’ / Chip coordinatess

TFORM1 = ’1I ’ / format of column 1

TTYPE2 = ’CHIPY ’ / Chip coordinates

TFORM2 = ’1I ’ / format of column 2

TTYPE3 = ’DETX ’ / Detector coordinates

TFORM3 = ’1I ’ / format of column 3

TTYPE4 = ’DETY ’ / Detector coordinates

TFORM4 = ’1I ’ / format of column 4

TLMIN1 = 1 / minimum legal value in column

TLMAX1 = 512 / maximum legal value in column

TLMIN2 = 1 / minimum legal value in column

TLMAX2 = 384 / maximum legal value in column

TLMIN3 = -256 / minimum legal value in column

TLMAX3 = 255 / maximum legal value in column

TLMIN4 = -192 / minimum legal value in column

TLMAX4 = 191 / maximum legal value in column

TDMIN1 = 17 / minimum actual value in column

TDMAX1 = 510 / maximum actual value in column

TDMIN2 = 6 / minimum actual value in column

TDMAX2 = 378 / maximum actual value in column

The CHIPX and CHIPY columns in this example give the
photon location in the chip reference frame, and the DETX and
DETY columns give the location in the detector reference frame.

The TLMINn and TLMAXn keywords give the allowed
range of values in each column. The TDMINn and TDMAXn
keywords are given for the first 2 columns in this example, to
illustrate that the actual range of values in the column neednot
cover the entire allowed range. The TLMINn and TLMAXn key-
words are often used to define the default binning range when
creating a histogram of the values in the column(s). To create a
2D image from the CHIPX and CHIPY columns, the TLMINn
and TLMAXn keywords for those columns indicate that the his-
togram bins should cover the coordinate range from 1 to 512 in
the X direction, and from 1 to 384 in the Y direction to create
an image of the entire chip. To make a similar image from the
DETX and DETY columns, the bins would need to cover the
coordinate range from -256 to+255 in X, and -192 to+191 in
the Y direction (i. e., the first pixel in the lower left cornerof
the binned image would record the number of events that have
DETX = -256 and DETY= -192). It is important to note that
the values in the columns are allowed to exceed the range given

18

by TLMINn and TLMAXn. For example, any anomalous photon
events might be assigned a chip coordinate of (-1, -1), therefore
the histogramming algorithm should be prepared to deal with
such outliers.

In practice, the TDMINn and TDMAXn keywords have
been rarely used in publicly archived data sets. In contrast,
the TLMINn and TLMAXn keywords are widely used, espe-
cially in the event list data files that have been produced by
ROSAT, Chandra, XMM-Newton, INTEGRAL, and other X-ray
and gamma-ray astrophysics missions since about 1994.

19

12. FITS Header Inheritance Convention

12.1. Preface

This convention has primarily been used in FITS data files pro-
duced and distributed by the Space Telescope Science Institude
and by NOAO/KPNO beginning in 1995. It has also been used
within data files from various instruments and data pipelines op-
erated by, or partly by, the United Kingdom, such as INT/WFC,
UKIRT/WFCAM and ESO/VISTA/VIRCAM.

12.2. INTRODUCTION

There are many instances of FITS data files where the same
set of keywords (e.g. ’TELESCOP’ or ’INSTRUME’) are dupli-
cated with the same value in every extension of a multi-extension
FITS file. It would be desirable in such cases to write the key-
word only once, and have it be shared by every extension in the
file. One (usually minor) benefit would be to reduce the size of
the file, but more importantly, this would avoid duplicatinginfor-
mation in the file. This can cause problems with, for example,
dynamic updates, where every instance of the keyword would
need to checked for consistency.

The INHERIT keyword convention was developed to ad-
dress these issues by allowing the extensions in a FITS file toim-
plicitly inherit the keywords in the primary header; this prevents
needless repetition of keywords in each extension header and
provides a mechanism for software to easily access keywords
that are shared between different extensions. In principle, the
convention allows one to build software that requires the user to
ask only once for the value of a specific keyword for a given ex-
tension (rather than explicitly doing two keyword lookups,one
for the extension and one for the primary header). By using this
convention software can treat the primary and extension headers
as effectively one logical header.

This convention was developed in 1995 and is extensively
used in FITS files produced at the STScI for data sets from
the the later genration of instruments on the Hubble Space
Telescope, including STIS, NICMOS, and ACS. Software sup-
port for this convention has been built into the IRAF FITS Image
kernel (Zarate & Greenfield 1996). This convention continues to
be used in various data sets produced by NOAO. It is also used
by various instruments and data pipelines operated by, or partly
by, the United Kingdom, such as INT/WFC, UKIRT/WFCAM
and ESO/VISTA/VIRCAM.

12.3. IMPLEMENTATION DETAILS

The INHERIT keyword in an extension header shall have a log-
ical value of T or F to indicate whether or not the current ex-
tension should inherit the keywords in the primary header ofthe
FITS file. The INHERIT keyword shall be defined in the ex-
tension header immediately after the mandatory keywords. This
Inherit Convention should only be used in FITS files that havea
null primary array (e.g., with NAXIS= 0) to avoid possible con-
fusion if array-specific keywords (e.g., BSCALE and BZERO)
were to be inherited. If INHERIT=F in an extension header, the
keywords from the primary header should not be inherited.

When an application that supports this convention reads an
extension header with INHERIT= T, it should merge the key-
words in the current extension with the primary header key-
words. The exact merging mechanism is left up to the ap-

plication, but, for example, all the extension keywords could
be copied into a structure in memory, and then the keywords
from the primary array could be appended to it. The value of
the INHERIT keyword should be set to F after the keywords
have been merged. The mandatory primary array keywords
(e.g., BITPIX, NAXIS, and NAXISn) and any COMMENT,
HISTORY, and blank keywords in the primary header are never
inherited. If the same keyword is present in both the primary
header and the extension header, the value in the extension
header shall take precedence. If an application modifies thevalue
of an inherited keyword in an extension, the value of that key-
word in the primary header is not affected (i.e., the application
must explicitly change the value of the primary header keyword
if that is desired).

12.4. PRACTICAL CONSIDERATIONS

One disadvantage to using this convention is that it may be hard
to preserve the separation of the primary and extension header
keywords in software. For example, simply copying an exten-
sion to a new file could cause the primary and extension key-
words to be merged, thus effectively negating the benefits of this
convention unless the software takes special care to disable the
automatic inheritance and propagates the primary header and ex-
tension header separately. Thus, the convenience of not requir-
ing two keyword lookups has been transferred to an inconve-
nience of trying to preserve the separation in the face of auto-
matic merging of the two.

Another practical issue is that in applications where the bytes
in the FITS file are interpreted serially (e.g., on tape or Internet
downloads), the reader would need to cache the primary header
in case it turns out that a later extension in the file uses the
INHERIT convention.

Another drawback is that users may become confused when
adding or modifying keywords to files with this convention. If
the keywords have become inadvertently duplicated (i.e., are
present in both the primary and extension headers) and the user
modifies the primary keyword, they are surprised that no change
in the keyword value has taken place (because the extension
value takes precedence). Users may also become confused if
they use a mixture of software tools, some of which show the
inherited keywords in the extension header and others that do
not support this convention.

Potential future users of this convention should carefully
consider whether the benefits outweigh the disadvantages in
their particular situation.

12.5. REFERENCES

Zarate, N & Greenfield, P 1996, ”A FITS Image Extension
Kernel for IRAF” Astronomy DataAnalysis Software and
Systems V, ASP Conference Series, Vol. 101

20

13. FITS Foreign File Encapsulation Convention

13.1. Preface

This convention was developed at NOAO/KPNO in 1999 mainly
to encapsulate graphics files into FITS files in the NOAO High
Performance Pipeline System.

13.2. Introduction

This document describes a FITS convention developed by the
IRAF Group (D. Tody, R. Seaman, and N. Zarate) at the National
Optical Astronomical Observatory (NOAO). This conventionis
implemented by the fgread/fgwrite tasks in the IRAF fitsutil
package. It was first used in May 1999 to encapsulate preview
PNG-format graphics files into FITS files in the NOAO High
Performance Pipeline System.

13.3. FOREIGN File Extension

A FITS extension of type ’FOREIGN’ (henceforth a ”FOREIGN
file extension” or just ”FOREIGN extension”) provides a mecha-
nism for storing an arbitrary file or tree of files in FITS, allowing
it to be restored to disk at a later time. Each FOREIGN extension
contains a single file. This mechanism also provides a means for
associating a group of FITS extensions of any type. Certain of
the file attribute keywords can be included in the header of any
FITS file or extension to support such things as storing a direc-
tory tree containing images, tables, and other non-FITS types of
files in a multi-extension FITS file, and later restoring the whole
tree to disk. The motivation for this extension is to allow anim-
plementation based on the FITS multi-extension mechanism to
encapsulate and pass non-FITS data. The FOREIGN extension
may be used to store a file from any type of operating system
(e.g. UNIX or Windows), however some of the specific file at-
tributes that are recorded in the FOREIGN extension keywords
may not map completely between different systems (e.g. the
UNIX filemode string that may be recorded in the FGFMODE
keyword does not have an exact counterpart under Windows).

The header of a FOREIGN FITS extension must begin with
the following five keywords in the specified order with no inter-
vening keywords.

1 XTENSION= ’FOREIGN ’

2 BITPIX = 8

3 NAXIS = 0

4 PCOUNT = <filesize> / file size in bytes

5 GCOUNT = 1

.

EXTNAME = ’<filename>’

Some early implementations of the FOREIGN extension re-
versed the order of the PCOUNT and GCOUNT keywords, but
this usage is now deprecated. The optional EXTNAME keyword
is used only to identify the extension in listings. To restore a file
to disk the ”FG” (file group) keywords are used as outlined in
the following section.

13.4. File Group (FG) Keywords

To be able to later unpack FOREIGN extensions and restore
files to disk, a number of keywords must be added to the ex-
tension headers to store the information required to restore the

files. These are the ”FG” keywords. The FG keywords are used
in both FOREIGN type extensions and in standard FITS exten-
sions such as IMAGE, BINTABLE, and so on.

FG GROUP (string) - Each time a file group is written a
group name is assigned. The group name associates all of the
elements of a group. Assuming the group name is unique then
this can be used to associate all the extensions in a group for
later restoration. This is useful if groups are concatenated in a
larger sequence of extensions. The group name is arbitrary (like
a filename) and is assigned by the user when the file group is
written. For example, a group name for a directory tree mightbe
the name of the root directory. It is up to the writer program to
assign a group name if the user does not predefine one.

FG FNAME (string) - The filename of the file associated
with the current extension. The maximum filename length is 67
characters. Any printable character except apostrophe is permit-
ted. For an extension of type FOREIGN where the file type is
directory, FGFNAME is the name of the directory.

FG FTYPE (string) - The physical file type. The following
types are recognized:

– ”text” - A file containing only text. Stored 8 bits per character
using newline to delimit lines of text (like Unix).

– ”binary” - Any file which is not a text file or one of the known
file types. Stored as a byte stream without any conversion.

– ”directory” - implementation dependent
– ”symlink” - implementation dependent
– ”FITS” - a native FITS extension
– ”FITS-MEF” - a native multi-extension FITS (MEF) file. No

count of the number of extensions in the MEF file is given,
rather the MEF group consists of all subsequent extensions
until a FITS extension is encountered which starts a new file.

FG MTYPE (string) - The logical or ”mime” type of the file
(optional).

FG LEVEL (integer) - The directory nesting level. All of the
files in a directory are at the same level. FOREIGN extensions
of type directory are used to name the directories at each level so
that pathnames can be reconstructed (this scheme assumes that
the extensions in a file group are ordered). Level 0 (zero) is the
root directory of the file group. The root directory is unnamed
and is implicitly the user’s current working directory intowhich
the file in the FOREIGN extension would be unpacked. When
packing files into FOREIGN FITS extensions, the current work-
ing directory could be a logical choice for the FGGROUP file
group name.

FG FSIZE (integer) - The size in bytes of the data portion
of the file. This value is always identical to the value of the
PCOUNT keyword. In the case of a file with a FGTYPE value
equal to ”directory”, the FGFSIZE value is zero.

FG FMODE (string) - The file mode as a string (”rwx-rwx-
rwx”, bits not set given as ”-”)

FG FUOWN (string) - The file UID (user ID) as the file
owner name string.

FG FUGRP (string) - The file GID (group ID) as the file
group name string.

FG CTIME (string) - The file creation time as a UTC value
expressed as an ISO 8601 string.

FG MTIME (string) - The file modification time as a UTC
value expressed as an ISO 8601 string.

FG COMP (string) - This keyword will not be used initially,
but is reserved in case we choose to implement file (e.g. gzip)

21

compression in the archiver. The value would be a string such
as ”none” or ”gzip”. In the meantime files can be archived in
compressed form by compressing them beforehand and archiv-
ing the compressed files as binary files. Part of the reason we
are reluctant to implement compression in the archiver is that
archive data may last indefinitely and it is hard to guaranteethat
the compressed data will be readable a decade or two in the
future. We might need to avoid compression for archival data
unless the compression algorithms and/or code are part of the
archive as well. (This discussion refers only to foreign files, not
to compressed images).

13.5. Examples

The following examples are taken from actual runs on the IRAF
implementation of this convention using the tasks fgread and fg-
write from the external package fitsutil. These utilities are writ-
ten in C and are not tied to any IRAF system library.

The IRAF fitsutil external package contains the fg-
write/fgread tasks to write and read FOREIGN extensions.
These are scripts that call the native C programs fgwrite.e and
fgread.e with the following arguments:

fgwrite [t ¡tbdsfm¿] [o ¡tbdsfm¿] [vdih] [g ¡groupname¿] [f
outputfits file] [input files]

Switches: f write to named file, otherwise write to stdout
d print debug messages
v verbose; print full description of each file
g FG GROUP name. The default is the root directory name
t select file types to include in the output file
o skip file types from input files selection
h do not produce primary HDU
i write Table Of Contents in primary HDU
s calculate CHECKSUM and DATASUM for the input file
fgread [t ¡tbdsfm¿ [o ¡tbdsfm¿] [n ranges] [vdxrf] [f fitsfile]

[files]
where ranges is of the form 1,2,5,8-11
Switches:
d print debug messages
f read from named file rather than stdin
n get list of extension numbers to extract
o omit the indicated FITS types (tbdsfm)
r replace existing file at extraction
s check CHECKSUM if keywords are present
t include the indicated FITS types (tbdsfm) only
v verbose; print full description of each file
x extract files
The possible file types are
t: text
b: binary
d: directory
s: symbolic link
f: single FITS file
m: multiple extension FITS file (MEF)
Example 1: Create a FITS file containing an arbitrary set of

files in a directory.

fi> dir r* l+

brwrwr zarate 3616 Aug 14 9:23 rdf.o

trwrwr zarate 6489 Aug 14 10:30 rdf_plio.c

xtrwrwr zarate 6952 Aug 14 10:31 read_plio

xtrwrwr zarate 6903 Aug 13 14:43 read_plio_save

xtrwrwr zarate 6952 Aug 8 15:02 readf_save

fi> fgwrite r* /tmp/fg.fits # Create a FITS file with the

fi> fxh /tmp/fg.fits # See the FITS file contents (single

EXT# EXTTYPE EXTNAME EXTVER BITPIX

0 /tmp/ft.fits 8

1 FOREIGN rdf.o 1 8

2 FOREIGN rdf_plio.c 1 8

3 FOREIGN readf_save 1 8

4 FOREIGN read_plio 1 8

5 FOREIGN read_plio_save 1 8

Example 2: Here are the values of some of the FGkeywords
for the case where the FITS file contains files that were originally
in the tki/ directory and the tki/dir2 subdirectory.

EXT# FG_FNAME FG_FTYPE FG_LEVEL FG_FSIZE FG_FMODE

0

1 tki directory 1 0 drwxrwxrx

2 max.o binary 2 1616 rwrwr users

3 dir2 directory 2 0 drwxrwxrx

4 list.txt text 3 69 rwrwr users

5 home.txt text 3 1113 rwrwr users

6 gmttolst.c text 2 1243 rwrr users

7 a.c text 2 770 rwrwr users

8 varg.c text 2 284 rwrwr users

9 max.c text 2 372 rwrwr users

13.6. Implementation Notes

The following design notes refer to the fgwrite and fgread tasks
in the IRAF fitsutil package, and provide some additional con-
text and background information relating to the original motiva-
tions for the FOREIGN extension.

The fgwrite and fgread programs as used in the telescope
data handling system are host callable (Unix) level tasks.

Sample syntax:
fgwrite ¡flags¿ ¡input-file-template-list¿
fgread ¡flags¿ ¡input-file¿
The intention is not to provide a general file archive capabil-

ity, but rather to be able to use FITS to carry along and archive
some non-FITS auxiliary data. A secondary goal is to generalize
FITS somewhat so that directories can be handled (archived and
later restored) as well as linear file templates.

Since the goal is not to provide a general file archive capa-
bility, certain details are not addressed: symlinks to directories
are not followed by the writer; unlike tar, hard links are notpre-
served; special files are ignored.

Selected task options:
Input-file-template-list is a sequence of file names or direc-

tory names (if it is a unix task, any templates will already have
been expanded by the shell).

There should be an option to fgwrite specify the types of
files to be archived; when descending a directory, a file list alone
will not handle this. Hence some mechanism such as which of
the possible supported file types (tbdsf), or a pattern matching
template such as in ”find -name”, would be used to select the
files to be archived.

Output File Format

22

The output host file (or byte stream) is a conventional FITS
file consisting of a sequence of one or more FITS extensions,
optionally preceded by a dataless primary header unit (PHU)de-
scribing the entire file. Writing of the PHU may be disabled even
if a file is being written to disk (e.g. when writing a sequenceof
extensions to be concatenated).

Foreign files (text, binary, directory, symlink) are wrapped as
single extensions with XTENSION=’FOREIGN’. Single FITS
images without extensions are converted to IMAGE extensions,
writing a single extension to the output stream.

Multi-extension FITS files in the input are written unchanged
except that keywords are added to the first HDU to identify the
MEF group (subsequent extensions are merely copied to the out-
put stream unchanged). If the first HDU in the input file is a PHU
it is converted to an IMAGE extension. The order of the exten-
sions in the output stream must match that in the input MEF for
the MEF to be later restored to disk. The PHU and all extensions
in the input MEF are still visible in the output file; their associ-
ation as an MEF grouping is evident only by examining the FG
keywords in the HDU. Any internal MEF associations, such as
for inheritance, are still present, but might not be recognized by
most software until the MEF group is later restored to a file.

By default the output stream will have a dataless PHU de-
scribing the contents of the file (this can be disabled as men-
tioned above). The PHU may optionally include a table of con-
tents for the output file. If a TOC is generated this will require
that the output file list be fully processed to determine the type
and size of each input file, before writing out the PHU with TOC
followed by the input data files. This might be desirable in any
case to simplify the code (construction of the input file listcan
be separated from file conversion and output).

23

14. Checksum Convention

14.1. Preface

The Checksum convention was developed in 1994 and has been
widely used to verify the entegrity of FITS files produced by
many observatories.

14.2. Introduction

The checksum keywords described here provide an integrity
check on the information contained inFITSHDUs. (Header and
Data Units are the basic components of FITS files, consisting
of header keyword records followed by optional associated data
records). TheCHECKSUM keyword is defined to have a value that
forces the 32-bit 1’s complement checksum accumulated overall
the 2880-byteFITS logical records in the HDU to equal negative
0. (Note that 1’s complement arithmetic has both positive and
negative zero elements). Verifying that the accumulated check-
sum is still equal to -0 provides a fast and fairly reliable way
to determine that the HDU has not been modified by subsequent
data processing operations or corrupted while copying or storing
the file on physical media. The checksum does not guard against
organized transformations or malicious tampering, however, be-
cause simple transformations, such as rearranging the order of
32-bit words in the file, do not affect the computed checksum
value. The checksum also does not provide any information on
the authenticity of the file because theCHECKSUM keyword can
always be updated after making modifications to the file, leaving
no trace that the file is not the same as the original. A brief com-
parison with alternative checksum algorithms is given in§A.6.

Two FITSkeywords are reserved to record the checksum in-
formation in an HDU:DATASUM andCHECKSUM. Normally both
keywords will be present in the header if either is present, but
this is not required. These keywords apply only to the HDU in
which they are contained. If theCHECKSUM keywords are written
in one HDU of a multi-HDUFITSfile then it is strongly recom-
mended that they also be written to every other HDU in the file.
In that case the checksum accumulated over the entire file will
equal -0 as well. It is recommended that the current date and time
be written into the comment field of both keywords to document
when the checksum was computed (or more precisely, the time
that the checksum computation process was started).

14.3. DATASUM Keyword

The value field of theDATASUM keyword shall consist of a char-
acter string containing the unsigned integer value of the 32-bit
1’s complement checksum of the data records in the HDU (i.e.,
excluding the header records). For this purpose, each 2880-byte
FITS logical record should be interpreted as consisting of 720
32-bit unsigned integers. The 4 bytes in each integer must be
interpreted in order of decreasing significance where the most
significant byte is first, and the least significant byte is last.
Accumulate the sum of these integers using 1’s complement
arithmetic in which any overflow of the most significant bit is
propagated back into the least significant bit of the sum.

The DATASUM value is expressed as a character string (i.e.,
enclosed in single quote characters) because support for the full
range of 32-bit unsigned integer keyword values is problematic
in some software systems. This string may be padded with non-
significant leading or trailing blank characters or leadingzeros.

A string containing only 1 or more consecutive ASCII blanks
may be used to represent an undefined or unknown value for the
DATASUM keyword. TheDATASUM keyword may be omitted in
HDUs that have no data records, but it is preferable to include the
keyword with a value of 0. Otherwise, a missingDATASUM key-
word asserts no knowledge of the checksum of the data records.

14.4. CHECKSUM Keyword

The value field of theCHECKSUM keyword shall consist of an
ASCII character string whose value forces the 32-bit 1’s com-
plement checksum accumulated over the entireFITS HDU to
equal negative 0. There are a vast number of possible charac-
ter strings that could satisfy this requirement, but for thesake of
consistency and uniformity it is recommended that the particu-
lar 16-character string generated by the algorithm described in
the appendix be used. A string containing only 1 or more con-
secutive ASCII blanks may be used to represent an undefined or
unknown value for theCHECKSUM keyword.

14.5. CHECKSUM Keyword Implementation Guidelines

14.5.1. Overview

Checksums are used to gain confidence in the continued integrity
of all sorts of data. The normal procedure is to calculate the
checksum of the data on the transmitting side of some communi-
cation channel (including magnetic media) and later to compare
that checksum with the recalculated checksum on the receiving
side. The original checksum is transmitted separately overthe
same communication channel.

This scheme works forFITS data as for other data, but sep-
arating the checksum from theFITS file limits its utility, espe-
cially for archival storage. It is also hard to see just how toin-
corporate a separate checksum into theFITS standard.

The Internet checksum (ref. 5–7) resolves the similar prob-
lem of embedding a checksum within each IP packet by forcing
the 1’s complement checksum of the entire packet to equal zero.
This is accomplished by writing the complement of the calcu-
lated checksum into each packet instead of the checksum itself.

A 1’s complement checksum is preferable to a 2’s comple-
ment checksum (as used by the Unixsum command, for exam-
ple), since overflow bits are permuted back into the sum and
therefore all bit positions are sampled evenly. A 32-bit sumis as
quick and easy to calculate as a 16 bit sum due to this symmetry,
providing greater sensitivity to errors (see§A.6).

Arranging to write a binary number into aFITS file is
unattractive and limiting. However, the properties of commuta-
tivity and associativity that make the Internet checksum work in
the first place, also make it possible to generalize the technique
with an ASCII encoding that may be embedded within aFITS
header keyword (ref. 1).

Although it is advantageous to store the checksum comple-
ment within each HDU, the only place where that can be done,
without violating the standard, is in the header. As a conse-
quence, one has to be cognizant of the fact that this mechanism
is not practical for application in situations where a FITS file is
being created dynamically onto a streaming medium: at the point
in time when the header is being written the value of DATASUM
is not yet known, and when DATASUM is known the header can-
not be modified anymore.

24

14.5.2. Recommended CHECKSUM Keyword Implementation

The recommendedCHECKSUM keyword algorithm described here
generates a 16-character ASCII string that forces the 32-bit 1’s
complement checksum accumulated over the entireFITS HDU
to equal negative 0 (all 32 bits equal to 1). In addition, thisstring
will only contain alphanumeric characters within the ranges 0–9,
A–Z, and a–z to promote human readability and transcription.
This CHECKSUM keyword value must be expressed in fixed for-
mat, with the starting single quote character in column 11 and
the ending single quote character in column 28 of theFITSkey-
word record, because the relative placement of the value string
within the keyword record affects the computed HDU checksum.
The steps in the algorithm are as follows:

1. Write the CHECKSUM keyword into the HDU header
with an initial value consisting of 16 ASCII zeros
(’0000000000000000’)where the first single quote charac-
ter is in column 11 of theFITSkeyword record. This specific
initialization string is required by the encoding algorithm de-
scribed in§A.3. The final comment field of the keyword, if
any, must also be written at this time. It is recommended that
the current date and time be recorded in the comment field
to document when the checksum was computed.

2. Accumulate the 32-bit 1’s complement checksum over the
FITS logical records that make up the HDU header in the
same manner as was done for the data records by interpret-
ing each 2880-byte logical record as 720 32-bit unsigned in-
tegers.

3. Calculate the checksum for the entire HDU by adding (us-
ing 1’s complement arithmetic) the checksum accumulated
over the header records to the checksum accumulated over
the data records (i.e., the previously computedDATASUM key-
word value).

4. Compute the bit-wise complement of the 32-bit total HDU
checksum value by replacing all 0 bits with 1 and all 1 bits
with 0.

5. Encode the complement of the HDU checksum into a 16-
character ASCII string using the algorithm described in
§A.3.

6. Replace the initialCHECKSUM keyword value with this 16-
character encoded string. The checksum for the entire HDU
will now be equal to negative 0.

14.5.3. Recommended ASCII Encoding Algorithm

The algorithm described here is used to generate an ASCII string
which, when substituted for the value of theCHECKSUM keyword,
will force the checksum for the entire HDU to equal negative 0. It
is based on a fundamental property of 1’s complement arithmetic
that the sum of an integer and the negation of that integer (i.e, the
bitwise complement formed by replacing all 0 bits with 1s and
all 1 bits with 0s) will equal negative 0 (all bits set to 1). This
principle is applied here by constructing a 16-character string
which, when interpreted as a byte stream of 4 32-bit integers, has
a sum that is equal to the complement of the sum accumulated
over the rest of the HDU. This algorithm also ensures that the16
bytes that make up the 4 integers all have values that correspond
to ASCII alpha-numeric characters in the range 0–9, A–Z, and
a–z.

1. Begin with the 1’s complement (replace 0s with 1s and 1s
with 0s) of the 32-bit checksum accumulated over all the

FITS records in the HDU after first initializing theCHECKSUM
keyword with a fixed-format string consisting of 16 ASCII
zeros (’0000000000000000’).

2. Interpret this complemented 32-bit value as a sequence of
4 unsigned 8-bit integers, A, B, C and D, where A is the
most significant byte and D is the least significant. Generate
a sequence of 4 integers, A1, A2, A3, A4, that are all equal to
A divided by 4 (truncated to an integer if necessary). If A is
not evenly divisible by 4, add the remainder to A1. The key
property to note here is that the sum of the 4 new integers is
equal to the original byte value (e.g., A= A1 + A2 + A3 +
A4). Perform a similar operation on B, C, and D, resulting in
a total of 16 integer values, 4 from each of the original bytes,
which should be rearranged in the following order:

A1 B1 C1 D1 A2 B2 C2 D2 A3 B3 C3 D3 A4 B4 C4 D4

Each of these integers represents one of the 16 characters
in the finalCHECKSUM keyword value. Note that if this byte
stream is interpreted as 4 32-bit integers, the sum of the inte-
gers is equal to the original complemented checksum value.

3. Add 48 (hex 30), which is the value of an ASCII zero char-
acter, to each of the 16 integers generated in the previous
step. This places the values in the range of ASCII alphanu-
meric characters ’0’ (ASCII zero) to ’r’. This offset is effec-
tively subtracted back out of the checksum when the initial
CHECKSUM keyword value string of 16 ASCII 0s is replaced
with the final encoded checksum value.

4. To improve human readability and transcription of the string,
eliminate any non-alphanumeric characters by considering
the bytes a pair at a time (e.g., A1+ A2, A3 + A4, B1 +
B2, etc.) and repeatedly increment the first byte in the pair
by 1 and decrement the 2nd byte by 1 as necessary until they
both correspond to the ASCII value of the allowed alphanu-
meric characters 0–9, A–Z, and a–z shown in Figure 1. Note
that this operation conserves the value of the sum of the 4
equivalent 32-bit integers, which is required for use in this
checksum application.
[postscript figure goes here!!]

5. Cyclically shift all 16 characters in the string one placeto the
right, rotating the last character (D4) to the beginning of the
string. This rotation compensates for the fact that the fixed
formatFITScharacter string values are not aligned on 4-byte
word boundaries in theFITS file. (The first character of the
string starts in column 12 of the header card image, rather
than column 13).

6. Write this string of 16 characters to the value of the
CHECKSUM keyword, replacing the initial string of 16 ASCII
zeros.

To invert the ASCII encoding, cyclically shift the 16 charac-
ters in the encoded string one place to the left, subtract thehex
30 offset from each character, and calculate the checksum by in-
terpreting the string as 4 32-bit unsigned integers. This can be
used, for instance, to read the value ofCHECKSUM into the soft-
ware when verifying or updating a file.

14.5.4. Encoding Example

This example illustrates the encoding algorithm given in§A.3.
Consider aFITS HDU whose 1’s complement checksum is
868229149, which is equivalent to hex33C0201D. This num-
ber was obtained by accumulating the 32-bit checksum over
the header and data records using 1’s complement arith-

25

metic after first initializing theCHECKSUM keyword value to
’0000000000000000’. The complement of the accumulated
checksum is 3426738146, which is equivalent to hexCC3FDFE2.
The steps needed to encode this hex value into ASCII are shown
schematically below:

Byte Preserve byte alignment

A B C D A1 B1 C1 D1 A2 B2 C2 D2 A3 B3 C3 D3 A4 B4 C4 D4

CC 3F DF E2 -> 33 0F 37 38 33 0F 37 38 33 0F 37 38 33 0F 37 38

+ remainder 0 3 3 2

= hex 33 12 3A 3A 33 0F 37 38 33 0F 37 38 33 0F 37 38

+ 0 offset 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30

= hex 63 42 6A 6A 63 3F 67 68 63 3F 67 68 63 3F 67 68

ASCII c B j j c ? g h c ? g h c ? g h

Eliminate punctuation characters

initial values c B j j c ? g h c ? g h c ? g h

. c C j j c > g h c @ g h c > g h

. c D j j c = g h c A g h c = g h

. c E j j c < g h c B g h c < g h

. c F j j c ; g h c C g h c ; g h

. c G j j c : g h c D g h c : g h

final values c H j j c 9 g h c E g h c 9 g h

final string "hcHjjc9ghcEghc9g" (rotate characters 1 place to the right)

In this example byte B1 (originally ASCIIB) is shifted higher
(to ASCII H) to balance byte B2 (originally ASCII?) being
shifted lower (to ASCII9). Similarly, bytes B3 and B4 are
shifted by opposing amounts. This is possible because the two
sequences of ASCII punctuation characters that can occur in
encoded checksums are both preceded and followed by longer
sequences of ASCII alphanumeric characters. This operation is
purely for cosmetic reasons to improve readability of the final
string.

This is how theseCHECKSUM andDATASUM keywords would
appear in aFITSheader:

1 2 3 4 5 6 7

1234567890123456789012345678901234567890123456789012345678901234567890...

DATASUM = ’2503531142’ / Data checksum created 2001-06-28T18:30:45

CHECKSUM= ’hcHjjc9ghcEghc9g’ / HDU checksum created 2001-06-28T18:30:45

14.5.5. Incremental Updating of the Checksum

The symmetry of 1’s complement arithmetic also means that af-
ter modifying aFITS HDU, the checksum may be incremen-
tally updated using simple arithmetic without accumulating the
checksum for portions of the file that have not changed. The
new checksum is equal to the old total checksum plus the check-
sum accumulated over the modified records, minus the original
checksum for the modified records.

An incremental update provides the mechanism for end-to-
end checksum verification through any number of intermediate
processing steps. Bycalculatingrather thanaccumulatingthe in-
termediate checksums, the original checksum test is propagated
through to the final data file. On the other hand, if a new check-
sum is accumulated with each change to the file, no information
is preserved about the file’s original state.

The recipe for updating theCHECKSUM keyword following
some change to the file is:C′ = C − m + m′, whereC and

C′ represent the file’s checksum (that is, the complement of
the CHECKSUM keyword) before and after the modification and
m and m′ are the corresponding checksums for the modified
FITS records or keywords only. Since theCHECKSUM keyword
contains the complement of the checksum, the correspondingly
complemented form of the recipe is more directly useful: ˜C′ =
˜(C + ˜m + m′), where ˜ (tilde) denotes the (1’s) complement op-
eration. (See ref. 5–7.) Note that the tilde on the right handside
of the equation cannot be distributed over the contents of the
parentheses due to the dual nature of zero in 1’s complement
arithmetic (ref. 7).

14.5.6. Alternate Checksum Algorithms

There are a variety of checksum schemes (for examples, see ref.
4,8–9) other than the 1’s complement algorithm described inthis
proposal, although other checksums are significantly more diffi-
cult (often computationally impractical or impossible) toembed
in FITS headers in the same fashion.

Checksums,cyclic redundancy checks(or CRCs, see ref. 3
for example), andmessage digestssuch as MD5 (ref. 12) are all
examples of hash functions. Many possible images will hash to
the same checksum—how many depends on the number of bits
in the image versus the number of bits in the sum. The utility
of a checksum to detect errors (but not forgeries), to one part in
however many bits, depends on whether it evenly samples the
likely errors.

For instance, a 32-bit checksum or CRC each detects the
same fraction of all bit errors (ref. 9), missing only 1/232 of all
errors (about 1 out of 4.3 billion) in the limit of long transmis-
sions (the extra zero of 1’s complement arithmetic changes this
by only a small amount).

CRCs and message digests are basically checksums that use
higher order polynomials, thus removing the arithmetic symme-
try on which this proposal relies. CRCs are tuned to be sensitive
to the bursty nature of communication line noise and will de-
tect all bitstream errors shorter than the size of the CRC. Note
that the 1’s complement sum is not insensitive to these bit er-
ror patterns, it is just notespecially sensitive to them. The extra
sensitivity of a CRC to burst errors must come at the expense
of lessened sensitivity to other bit pattern errors (since the total
fraction of errors detected remains the same) and does not neces-
sarily represent the best model forFITSbit errors. CRCs are also
designed to be implemented in hardware using XOR gates and
shift registers that accumulate the function “on-the-fly” and emit
the CRCafter transmitting the data. This is not well matched to
theFITS convention of writing the metadata as a header which
precedes the data records.

14.5.7. Digital Signatures

The particular intent of a message digest, on the other hand,is
to protect against human tampering by relying on functions that
are computationally infeasible to spoof. A message digest should
also be much longer than a simple checksum so that any given
message may be assumed to result in a unique value.

A digital signaturemay be formed by reverse encrypting a
message digest using the private key of a public key encryption
pair (ref. 13). A later decryption using the corresponding pub-
licly available key guarantees that the signature could only have
been generated by the holder of the private key, while the mes-

26

sage digest uniquely identifies the document (or image) thatwas
signed. Support for digital signatures could be added to theFITS
standard by defining aFITSextension format to contain the dig-
ital signature certificates, or perhaps by simply embeddingthem
in an appendedFITS table extension.

There is a tradeoff between the error detection capability
of these algorithms and their speed. The overhead of a digital
signature (or a software emulated CRC) is larger than a sim-
ple checksum, but may be essential for certain purposes (forin-
stance, archival storage) in the future. The checksum defined by
this proposal provides a way to verifyFITS data against likely
random errors, while on the other hand a full digital signature
may be required to protect the same data against systematic er-
rors, especially human tampering.

14.5.8. Fletcher’s Checksum

One other checksum algorithm shows some promise of being
embeddable in an ASCIIFITS header. This isFletcher’s check-
sum (ref. 9–11) which is a variant of the 1’s complement check-
sum that is tuned to trap bit error patterns similar to those trapped
by a CRC. It is somewhat slower than the 1’s complement check-
sum and more finicky to implement. The checksum is divided
into two (16 bit) pieces—a straight 1’s complement sum and a
higher order sum of the running sums. The procedure for updat-
ing the two checksum fields (zeroing the checksum of the file)
involves solving a pair of simultaneous equations. ASCII encod-
ing the checksum would require an iterative solution spreadover
the four separate ASCII encoded integer words (and including
the constraint of the hex 30 offset). Incremental updating of the
checksum would incur a similar penalty for each word of the
FITSfile that was modified.

The added complexity and overhead of handling Fletcher’s
checksum (see ref. 10–11) are unwarranted forFITS, at least as
the default algorithm, but this checksum is an interesting possi-
bility for binary applications. Other checksums are also options
in the binary case, especially if the checksum fields can be lo-
cated at the end of the file, which simplifies the arithmetic sig-
nificantly.

14.5.9. Error Correcting Algorithms

Error correcting (see ref. 2), as opposed to errordetecting,
algorithms are beyond the scope of this proposal, as are
non-systematic codes for either error detection or correction.
Systematic codes are those, such as the 1’s complement check-
sum, that require no change to the data when applied to a mes-
sage. Simply appending a checksum to a file is systematic, as is
appending parity or other check bits to each byte or record of
the data without otherwise modifying the data bits. Codes that
are not systematic involve recoding the individual data bits in
some fashion (see the discussion ofproduct codes in ref. 4, for
example).

14.5.10. Example C Code for Accumulating the Checksum

The 1’s complement checksum is simple and fast to com-
pute. This routine assumes that the input records are a multi-
ple of 4 bytes long (as is the case forFITS logical records),
but it is not difficult to allow for odd length records if neces-
sary. To use this routine, first initialize theCHECKSUM keyword

to ’0000000000000000’ and initializesum32 = 0, then step
through all theFITS logical records in the FITS HDU.

void checksum (

unsigned char *buf, /* Input array of bytes to be checksummed */

/* (interpret as 4-byte unsigned ints) */

int length, /* Length of buf array, in bytes */

/* (must be multiple of 4) */

unsigned int *sum32) /* 32-bit checksum */

{

/*

Increment the input value of sum32 with the 1’s complement sum

accumulated over the input buf array.

*/

unsigned int hi, lo, hicarry, locarry, i;

/* Accumulate the sum of the high-order 16 bits and the */

/* low-order 16 bits of each 32-bit word, separately. */

/* The first byte in each pair is the most significant. */

/* This algorithm works on both big and little endian machines. */

hi = (*sum32 >> 16);

lo = *sum32 & 0xFFFF;

for (i=0; i < length; i+=4) {

hi += ((buf[i] << 8) + buf[i+1]);

lo += ((buf[i+2] << 8) + buf[i+3]);

}

/* fold carry bits from each 16 bit sum into the other sum */

hicarry = hi >> 16;

locarry = lo >> 16;

while (hicarry || locarry) {

hi = (hi & 0xFFFF) + locarry;

lo = (lo & 0xFFFF) + hicarry;

hicarry = hi >> 16;

locarry = lo >> 16;

}

/* concatenate the full 32-bit value from the 2 halves */

*sum32 = (hi << 16) + lo;

}

14.5.11. Example C Code for ASCII Encoding

This routine encodes the complement of the 32-bit HDU check-
sum value into a 16-character string. The byte alignment of the
string is permuted one place to the right forFITS to left justify
the string value starting in column 12.

unsigned int exclude[13] = { 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, 0x40,

0x5b, 0x5c, 0x5d, 0x5e, 0x5f, 0x60 };

int offset = 0x30; /* ASCII 0 (zero) */

unsigned long mask[4] = { 0xff000000, 0xff0000, 0xff00, 0xff };

void char_encode (

unsigned int value, /* 1’s complement of the checksum value */

/* to be encoded */

char *ascii) /* Output 16-character encoded string */

{

int byte, quotient, remainder, ch[4], check, i, j, k;

char asc[32];

for (i=0; i < 4; i++) {

/* each byte becomes four */

byte = (value & mask[i]) >> ((3 - i) * 8);

quotient = byte / 4 + offset;

remainder = byte % 4;

for (j=0; j < 4; j++)

ch[j] = quotient;

ch[0] += remainder;

for (check=1; check;) /* avoid ASCII punctuation */

for (check=0, k=0; k < 13; k++)

for (j=0; j < 4; j+=2)

if (ch[j]==exclude[k] || ch[j+1]==exclude[k]) {

ch[j]++;

ch[j+1]--;

check++;

}

27

for (j=0; j < 4; j++) /* assign the bytes */

asc[4*j+i] = ch[j];

}

for (i=0; i < 16; i++) /* permute the bytes for FITS */

ascii[i] = asc[(i+15)%16];

ascii[16] = 0; /* terminate the string */

}

14.5.12. Acknowledgments

The authors gratefully acknowledge the many helpful comments
from Barry Schlesinger.

14.5.13. References

1. Seaman, R.L. 1994, “FITS Checksum Verification in the
NOAO Archive”, presented at the conferenceAstronomical
Data Analysis Software and Systems IV, to appear in the
A.S.P. Conf. Ser..

2. Peterson, W.W. and Weldon Jr., E.J. 1972,Error-Correcting
Codes, Second Edition (MIT Press).

3. McNamara, J.E. 1982,Technical Aspects of Data
Communication, Second Edition (Digital Press).

4. Plummer, W.W. 1978, “TCP Checksum Function Design”,
ACM Computer Communication Review, 19, no. 2, 95-101,
this is an appendix toInternet RFC 1071.

5. Braden, R. T., Borman, D.A., and Partridge, C. 1988
(September), “Computing the Internet Checksum”,ACM
Computer Communication Review, 19, no. 2, 86-94, this is
Internet RFC 1071.

6. Mallory, T. and Kullberg, A. 1990 (January), “Incremental
Updating of the Internet Checksum”,Internet RFC 1141.

7. Rijsinghani, A. (ed.) 1994 (May), “Computation of the
Internet Checksum via Incremental Update”,Internet RFC
1624.

8. Zweig, J. and Partridge, C. 1990 (March), “TCP Alternate
Checksum Options”,Internet RFC 1146.

9. Fletcher, J.G. 1982, “An Arithmetic Checksum for Serial
Transmission”, IEEE Transactions on Communications,
COM-30, no. 1, 247-252.

10. Nakassis, A. 1988, “Fletcher’s Error Detection Algorithm:
How to implement it efficiently and how to avoid the most
common pitfalls”,ACM Computer Communication Review,
18, no. 5, 63-88.

11. Sklower, K. 1989, “Improving the Efficiency of the OSI
Checksum Calculation”,ACM Computer Communication
Review, 19, no. 5, 32-43.

12. Rivest, R. 1992 (April), “The MD5 Message Digest
Algorithm”, Internet RFC 1321, see alsoRFC 1319andRFC
1320.

13. Zimmermann, P. 1995,The Official PGP User’s
Guide (MIT Press), PGP is available fromhttp://net-
dist.mit.edu/pgp.html or ftp://ftp.csn.net/mpj/README,
which also provide United States export and licensing
requirements.

InternetRequests for Comments, or RFCs, are the written
design documents for Internet protocols. They are available at
many locations on the Internet, includinghttp://www.cis.ohio-
state.edu/htbin/rfc/rfc-index.html.

28

15. Tiled Image Compression Convention

15.1. Preface

15.2. General Description

This document describes a convention for compressing n-
dimensional images and storing the resulting byte stream ina
variable-length column in a FITS binary table. The FITS file
structure outlined here is independent of the specific data com-
pression algorithm that is used. The implementation details for
4 widely used compression algorithms are described here, but
any other compression technique could also be supported by this
convention.

The general principle used in this convention is to first di-
vide the n-dimensional image into a rectangular grid of subim-
ages or ‘tiles’. Each tile is then compressed as a block of data,
and the resulting compressed byte stream is stored in a row ofa
variable length column in a FITS binary table. By dividing the
image into tiles it is generally possible to extract and uncom-
press subsections of the image without having to uncompress
the whole image. The default tiling pattern treats each row of a
2-dimensional image (or higher dimensional cube) as a tile,such
that each tile containsNAXIS1 pixels. This default many not be
optimal for some applications or compression algorithms, so any
other rectangular tiling pattern may be defined using theZTILEn

keywords that are described below. In the case of relativelysmall
images, it may be sufficient to compress the entire image as a
single tile, resulting in an output binary table with 1 row. In the
case of 3-dimensional data cubes, it may be advantageous to treat
each plane of the cube as a separate tile if application software
typically needs to access the cube on a plane by plane basis.

15.3. Keywords

The following keywords are defined by this convention for use
in the header of the FITS binary table extension to describe the
structure of the compressed image.

– ZIMAGE (required keyword) This keyword must have the log-
ical value T. It indicates that the FITS binary table extension
contains a compressed image and that logically this exten-
sion should be interpreted as an image and not as a table.

– ZCMPTYPE (required keyword) The value field of this key-
word shall contain a character string giving the name of
the algorithm that must be used to decompress the im-
age. Currently, values ofGZIP 1, GZIP 2, RICE 1, PLIO 1,
andHCOMPRESS 1 are reserved, and the corresponding algo-
rithms are described in a later section of this document. The
valueRICE ONE is also reserved as an alias forRICE 1.

– ZBITPIX (required keyword) The value field of this keyword
shall contain an integer that gives the value of theBITPIX

keyword in the uncompressed FITS image.
– ZNAXIS (required keyword) The value field of this keyword

shall contain an integer that gives the value of theNAXIS

keyword in the uncompressed FITS image.
– ZNAXISn (required keywords) The value field of these key-

words shall contain a positive integer that gives the value of
theNAXISn keywords in the uncompressed FITS image.

– ZTILEn (optional keywords) The value of these indexed key-
words (wheren ranges from 1 toZNAXIS) shall contain a
positive integer representing the number of pixels along axis
n of the compression tiles. Each tile of pixels is compressed

separately and stored in a row of a variable-length vector col-
umn in the binary table. The size of each image dimension
(given byZNAXISn) is not required to be an integer multiple
of ZTILEn, and if it is not, then the last tile along that dimen-
sion of the image will contain fewer image pixels than the
other tiles. If theZTILEn keywords are not present then the
default ’row by row’ tiling will be assumed such thatZTILE1
= ZNAXIS1, and the value of all the otherZTILEn keywords
equals 1.
The compressed image tiles are stored in the binary table in
the same order that the first pixel in each tile appears in the
FITS image; the tile containing the first pixel in the image
appears in the first row of the table, and the tile containing the
last pixel in the image appears in the last row of the binary
table.

– ZNAMEn and ZVALn (optional keywords) These pairs of op-
tional array keywords (where n is an integer index number
starting with 1) supply the name and value, respectively, of
any algorithm-specific parameters that are needed to com-
press or uncompress the image. The value ofZVALn may
have any valid FITS datatype. The order of the compression
parameters may be significant, and may be defined as part of
the description of the specific decompression algorithm.

– ZMASKCMP (optional keyword) Used to record the name of
the image compression algorithm that was used to compress
the optional null pixel data mask. See the“Preserving unde-
fined pixels with lossy compression” section for more de-
tails.

– The following 8 optional keywords are defined to store a
verbatim copy of the the value and comment fields of the
corresponding keywords in the original uncompressed FITS
image. These keywords can be used to reconstruct an identi-
cal copy of the original FITS file when the image is uncom-
pressed.

– ZSIMPLE - preserves the originalSIMPLE keyword
– ZTENSION - preserves the originalXTENSION keyword
– ZEXTEND - preserves the originalEXTEND keyword
– ZBLOCKED - preserves the originalBLOCKED keyword
– ZPCOUNT - preserves the originalPCOUNT keyword
– ZGCOUNT - preserves the originalGCOUNT keyword
– ZHECKSUM - preserves the originalCHECKSUM keyword
– ZDATASUM - preserves the originalDATASUM keyword

TheZSIMPLE, ZEXTEND, andZBLOCKED keywords may only
be used if the original uncompressed image was contained in
the primary array of the FITS file. TheZTENSION, ZPCOUNT,
andZGCOUNT keywords may only be used if the original un-
compressed image was contained in in IMAGE extension.

– ZQUANTIZ (optional keyword) This keyword records the
name of the algorithm that was used to quantize floating-
point image pixels into integer values which are then passed
to the compression algorithm, as discussed further in section
4 of this document.

– ZDITHER0 (optional keyword) The value field of this key-
word shall contain an integer that gives the seed value for
the random dithering pattern that was used when quantizing
the floating-point pixel values. The value may range from 1
to 10000, inclusive. See section 4 for further discussion of
this keyword.

– Other Keywords The FITS header of the compressed im-
age may contain other optional keywords. If a FITS primary
array or IMAGE extension is compressed using the conven-

29

tion described here, it is recommended that all the keywords
in the header of the original image, except for the manda-
tory keywords mentioned above, be copied verbatim and in
the same order into the header of the binary table extension
that contains the compressed image. All these keywords will
have the same meaning and interpretation as they did in the
original image, even in cases where the keyword is not nor-
mally expected to occur in the header of a binary table ex-
tension (e.g., theBSCALE andBZERO keywords, or the World
Coordinate System keywords such asCTYPEn, CRPIXn and
CRVALn).

15.4. Columns

The following columns in the FITS binary table are defined by
this convention. The order of the columns in the table is not sig-
nificant. The column names (given by theTTYPEn keyword) are
shown here in upper case letters, but the case is not significant.

Note regarding the variable-length columns: The
COMPRESSED DATA, GZIP COMPRESSED DATA, and
UNCOMPRESSED DATA columns described below will nor-
mally use the ’1P’ variable-length array FITS column format
if the size of the heap in the compressed FITS file is less than
about 2.1 GB in size. If the the heap is larger than 2.1 GB, then
the ’1Q’ format (which uses 64-bit pointers) must be used.

– COMPRESSED DATA (required column)
Each row of this variable-length column contains the byte
stream that is generated as a result of compressing the corre-
sponding image tile. The datatype of the column (as given
by the TFORMn keyword) will generally be either’1PB’,
’1PI’, or ’1PJ’ (or the equivalent’1Q’ format), depend-
ing on whether the compression algorithm generates an out-
put stream of 8-bit bytes, 16-bit integers, or 32-bit integers,
respectively.

– GZIP COMPRESSED DATA (optional column)
When using the quantization method to compress floating-
point images that is described in Section 4, it sometimes
may not be possible to quantize some of the tiles (e.g., if
the range of pixels values is too large or if most of the pix-
els have the same value and hence the calculated RMS noise
level in the tile is close to zero). There also may be other
rare cases where the nominal compression algorithm can not
be applied to certain tiles. In these cases, one may use an
alternate technique in which the raw pixel values are loss-
lessly compressed with the GZIP algorithm and the resulting
byte stream is stored in theGZIP COMPRESSED DATA col-
umn (with a’1PB’ or ’1QB’ variable-length array column
format). The correspondingCOMPRESSED DATA column for
these tiles must contain a null pointer.

– UNCOMPRESSED DATA (optional column)
Use of this column is no longer recommended, but it may ex-
ist in older compressed image files that were created before
support for theGZIP COMPRESSED DATA column (describe
above) was added to this convention in May 2011. This vari-
able length column contains the uncompressed pixels for any
tiles that cannot be compressed with the normal method. The
datatype of this column should correspond to the datatype of
the original image as shown in the following table:

Datatype BITPIX TFORMn

byte 8 ’1PB’ or ’1QB’
short int 16 ’1PI’ or ’1QI’
long int 32 ’1PJ’ or ’1QJ’
float -32 ’1PE’ or ’1QE’
double -64 ’1PD’ or ’1QD’

A compressed image may contain either
the UNCOMPRESSED DATA column or the
GZIP COMPRESSED DATA column, but not both.

– ZSCALE andZZERO (optional floating-point columns)
When using the quantization method to compress floating-
point images that is described in Section 4, these 2 columns
store the linear scale factor and the zero point offset, respec-
tively, that are used to scale the floating-point pixel values
into integers via,

Ii = ROUND((Fi − ZZERO)/ZS CALE) (7)

whereIi andFi are the integer and floating-point values, re-
spectively and the ROUND function rounds the result to the
nearest integer value. The array of integer tile pixel values
is then compressed using the algorithm that is specified by
the ZCMPTYPE keyword and the resulting compressed byte
stream is stored in theCOMPRESSED DATA column.
The ZSCALE and ZZERO columns should not be confused
with the reservedBSCALE andBZERO keywords which may
be present in integer FITS images (which have BITPIX=
8, 16, or 32). Any such integer images should normally be
compressed without any further scaling, and theBSCALE and
BZERO keywords should be copied verbatim into the header
of the binary table containing the compressed image.

– ZBLANK (optional column or keyword)
When using the quantization method to compress floating-
point images that is described in Section 4, this column is
used to store the integer value that represents undefined pix-
els (if any) in the scaled integer pixel values. These pixels
have an IEEE NaN value (Not a Number) in the uncom-
pressed floating-point image. The recommended value for
ZBLANK is -2147483648 (the largest negative 32-bit integer).
If the same null value is used in every tile of the image, then
ZBLANK may be given as a header keyword instead of a ta-
ble column. If there are no undefined pixels in the image
thenZBLANK is not required. If the uncompressed image has
an integer datatype (ZBITPIX > 0) then the reservedBLANK
keyword, which already serves this purpose, should be used
instead ofZBLANK.

– NULL PIXEL MASK (optional column)
When using some image compression techniques that do not
exactly preserve integer pixel values, it it may be neces-
sary to store a compressed image mask along with the com-
pressed image itself, to record the location of the undefined
pixels in the image. ThisNULL PIXEL MASK column may be
used for this purpose. See the “Preserving undefined pixels
with lossy compression” section for more details.

– Other Columns Any number of other columns may be
present in the table to supply other parameters that relate to
each image tile.

30

15.5. Quantization of Floating-Point Data

While floating-point format images may be losslessly com-
pressed (using gzip, since Rice and H-compress only compress
integer arrays), these images often do not compress very well
because the pixel values are too noisy; the less significant bits
in the mantissa of the pixel values effectively contain incom-
pressible random bit patterns. In order to achieve higher com-
pression, one needs to remove some of this noise, but without
losing the useful information content. One commonly used tech-
nique for reducing the noise is to scale the floating-point values
into quantized integers using Eq. 1, and using theZSCALE and
ZZERO columns to record the 2 scaling coefficients that are used
for each tile. Note that the absence of these 2 columns in a tile-
compressed floating-point image is an indication that the image
was not scaled and was instead losslessly compressed.

The main challenge in quantizing the image in this way is
in choosing an appropriate scaling factor. If it is too large, one
undersamples the pixel values resulting in a loss of information
in the image. If it is too small, however, it preserves too much
of the noise (or even amplifies the noise) in the pixel values,
resulting in poor compression.

An effective scaling algorithm for preserving a specified
amount of noise in each pixel value is described by White and
Greenfield (in the Proceedings of the 1998 ADASS VIII confer-
ence) and by Pence, Seaman, and White, PASP 121, 414 (2009).
With this method, the ZSCALE value (which is numerically
equal to the spacing between adjacent quantization levels)is cal-
culated to be some fraction, Q, of the RMS noise as measured in
background regions of the image. It can be shown that the num-
ber of binary bits of noise that are preserved in each pixel value
is given bylog2(Q)+1.792. For example, using Q= 8 (so that the
quantized levels have a spacing of 1/8th of the background RMS
noise value) produces a quantized image that preserves about 4.8
bits of noise in each pixel. Specifying the quantization level rel-
ative to the amount of noise in the image in this way produces
comparable quality images regardless of the noise level. Q is di-
rectly related to the compressed file size: decreasing Q by a fac-
tor of 2 will decrease the file size by about 1 bit/pixel. In order
to achieve the greatest amount of compression, one should use
the smallest value of Q that still preserves the required amount
of photometric and astrometric precision in the image.

One potential problem when applying this scaling method to
astronomical images, in particular, is that it can lead to a system-
atic bias in the measured intensities in faint parts of the image,
such as in the background sky. As the image is quantized more
coarsely, the measured intensity of the background regionsof the
sky will tend to be biased towards the nearest quantize level. One
very effective technique for minimizing this potential bias is to
“dither” the quantized pixel values by introducing random noise
during the quantization process. So instead of simply scaling ev-
ery pixel value in the same way using Eq. 1, one randomizes the
quantized levels by using this slightly modified equation:

Ii = ROUND(((Fi − ZZERO)/ZS CALE) + Ri − 0.5) (8)

whereRi is a random number between 0.0 and 1.0, and the 0.5
term is subtracted so that the mean quantity is equal to 0. Then
restoring the floating-point value, the same random number is
used with the inverse formula

Fi = ((Ii − Ri + 0.5) ∗ ZS CALE) + ZZERO (9)

This technique, which is called ‘subtractive dithering’ in
the signal processing literature (e.g., ”Quantization Noise” by
Widrow and Kollar), has the effect of dithering the zero-point of
the quantization grid on a pixel by pixel basis without adding
any actual noise to the image. The net effect of this is that the
mean (and median) pixel value in faint regions of the image more
closely approximate the value in the original unquantized image
than if all the pixels are scaled without dithering. This cansignif-
icantly increase the precision when measuring the net flux from
faint sources in the compressed image.

The key requirement when using this subtractive dithering
technique is that the exact same random number sequence must
be used when quantizing the pixel values to integers, and when
restoring them to floating point values. While most computer
languages supply a function for generating random numbers,
these functions are not guaranteed to generate the same sequence
of numbers every time. Accordingly, we define a specific algo-
rithm here for generating a repeatable sequence of pseudo ran-
dom numbers in Appendix A.

15.5.1. Dithering Algorithms

When quantizing floating point images, one may choose from
the 3 currently defined dithering algorithms as specified by the
value of theZQUANTIZ keyword, as described in the following
sections.

15.5.2. ZQUANTIZ= ’NO DITHER’

This is the simplest option in which no dithering is performed.
The floating-point pixels are simply quantized using Eq. 1. This
option should be assumed if theZQUANTIZ keyword is not
present in the header of the compressed floating-point image.

15.5.3. ZQUANTIZ= ’SUBTRACTIVE DITHER 1’

The steps in this dithering option are as follows:

1. Generate a sequence of 10000 single-precision floating-point
random numbers, RN, with a value between 0.0 and 1.0,
using the algorithm given in Appendix A. Since it could
be computationally expensive to generate a unique random
number for every pixel of large images, we repeatedly recy-
cle through this ‘look up table’ of random numbers.

2. Choose an integer in the range 1 to 10000 to serve as an
initial seed value for creating a unique sequence of random
numbers from the array that was calculated in the previous
step. The purpose of this is to reduce the chances of apply-
ing the same dithering pattern to 2 images that are subse-
quently subtracted from each other (or co-added), because
the benefits of randomized dithering are lost if all the pix-
els are dithered in phase with each other. The exact method
for computing this seed integer is not important as long as
the value is chosen more or less randomly. For example, one
might calculate the seed value based on the system clock
time when the image is compressed, or based on the check-
sum of all the pixel values in the first image tile that is com-
pressed. However, beware of using the checksum method for
choosing the seed value in cases where the first row/tile of
all the images in a dataset are identical, as can happen if all
the images have a border of zero or null valued pixels around
the actual image.

31

3. Write the integer seed value that was selected in the previous
step as the value of theZDITHER0 keyword in the header of
the compressed image. This value is required to recompute
the same dithering pattern when uncompressing the image.

4. Before quantizing each tile of the floating point image, cal-
culate an initial value for 2 offset parameters, I0 and I1, with
the following formulae:

I0 = modulo(T ILE NUMBER − 1+ ZDIT HER0, 10000)(10)

I1 = INT (RN(I0) ∗ 500.)(11)

where TILENUMBER is the row number in the binary ta-
ble that is used to store the compressed bytes for that tile,
ZDITHER0 is that value of that keyword, and RN(I0) is the
value of the (I0)th random number in the sequence that was
computed in the first step. Note that I0 has a value in the
range 0 to 9999 and I1 has a value in the range 0 to 499. This
method for computing I0 and I1 was chosen so that a differ-
ent sequence of random number is used to compress succes-
sive tiles in the image, and so that the sequence of I1 values
has a length of order 100 million elements before repeating.

5. Now quantize each floating-point pixel in the tile using
Eq. 2 and using random number RN(I1) for the first pixel.
Increment the value of I1 for each subsequent pixel in the
tile. If the value of I1 reaches the upper limit of 10000, then
increment the value of I0 and recompute I1 from Eq. 5. If the
value of I0 also reaches the upper limit of 10000, then reset
I0 to 0.
If the floating-point pixel has an IEEE NaN value, then it is
not quantized or dithered and instead it is set to the reserved
integer value that is specified by theZBLANK keyword. For
consistency, the value of I1 should also be incremented in
this case even though it is not used.

6. Compress the array of quantized integers using the lossless
algorithm that is specified by theZCMPTYPE keyword (use
Rice by default).

7. Write the compressed array of bytes into the
COMPRESSED DATA column in the appropriate row of
the binary table corresponding to that tile.

8. Write the linear scaling and zero point values that were used
in Eq. 2 for that tile into theZSCALE) andZZERO columns in
the same row of the binary table.

9. Repeat Steps 4 through 8 for each tile of the image.

While the above dithering algorithm is clearly not unique, we
present it here as a well defined method that should be possible to
implement in almost any computer language. It should be noted
that an image that is quantized using this technique can still be
unquantized using the simple linear scaling function givenby
Eq. 1. The only side effect in this case is to introduce slightly
more noise in the image than if the full subtractive dithering al-
gorithm were applied.

15.5.4. ZQUANTIZ= ’SUBTRACTIVE DITHER 2’

This dithering algorithm is identical to the
SUBTRACTIVE DITHER 1 algorithm described above, ex-
cept that any pixels in the floating-point image that are equal
to 0.0 are represented by the reserved value -2147483647 in
the quantized integer array. When the image is subsequently
uncompressed and unscaled, these pixels are restored to their

original value of 0.0. This dithering option is useful if the
zero-valued pixels have special significance to the data analysis
software, so that the value of these pixels must not be dithered.

15.6. Preserving undefined pixels with lossy compression

The null pixels in integer images are flagged by a reservedBLANK

value and will be preserved if a lossless compression algorithm
is used. If the image is compressed with a lossy algorithm, how-
ever (e.g., H-Compress with a scale factor greater than 1), then
some other technique must be used to identify the null pixelsin
the image.

The recommended method of recording the null pixels when
a lossy compression algorithm is used is to create an integerdata
mask with the same dimensions as the image tile. Set the null
pixels to 1 and all the other pixels to 0, then compress the mask
array using a lossless algorithm such as PLIO or GZIP. Store
the compressed byte stream in a variable-length array column
called ’NULL PIXEL MASK’ in the row corresponding to that
image tile. The ZMASKCMP keyword should be used to record
the name of the algorithm used to compress the data mask (e.g.,
RICE 1). The data mask array pixels will be assumed to have the
shortest integer datatype that is supported by the compression
algorithm (i.e., usually 8-bit bytes).

When uncompressing the image tile, the software must
check if the corresponding compressed data mask exists with
a length greater than 0, and if so, then uncompress the mask and
set the corresponding undefined pixels in the image array to the
appropriate value (as given by the BLANK keyword).

15.7. Currently Implemented Compression Algorithms

This section describes the 4 compression algorithms that are cur-
rently supported in the CFITSIO implementation of this tiled
image compression convention (available from the HEASARC
web site). This does not imply that other implementations ofthis
convention must support these same algorithms, nor does it limit
other implementations from supporting other compression algo-
rithms.

15.7.1. Rice compression algorithm

If ZCMPTYPE = ’RICE 1’ then the Rice algorithm is used to
compress and uncompress the image pixels. The Rice algorithm
(Rice, R. F., Yeh, P.-S., and Miller, W. H. 1993, in Proc. of the
9th AIAA Computing in Aerospace Conf., AIAA-93-4541-CP,
American Institute of Aeronautics and Astronautics) is simple
and very fast, compressing or decompressing 107 pixels/sec on
modern workstations. It requires only enough memory to hold
a single block of 16 or 32 pixels at a time. It codes the pixels
in small blocks and so is able to adapt very quickly to changes
in the input image statistics (e.g., Rice has no problem handling
cosmic rays, bright stars, saturated pixels, etc.).

The block size that is used should be recorded in the com-
pressed image header with

ZNAMEn = ’BLOCKSIZE’

ZVALn = 16 or 32

If these keywords are absent, then a default blocksize of 32
should be assumed.

32

The number of 8-bit bytes in each original integer pixel value
should be recorded in the compressed image header with

ZNAMEn = ’BYTEPIX’

ZVALn = 1, 2, 4, or 8

If these keywords are absent, then the default value of 4 bytes
per pixel (32 bits) should be assumed..

15.7.2. GZIP compression algorithm

If ZCMPTYPE = ’GZIP 1’ then the gzip algorithm is used to
compress and uncompress the image pixels. Gzip is the com-
pression algorithm used in the free GNU software utility of the
same name. It was created by Jean-loup Gailly and Mark Adler
and is based on the DEFLATE algorithm, which is a combina-
tion of LZ77 and Huffman coding. DEFLATE was intended as
a replacement for LZW and other patent-encumbered data com-
pression algorithms which, at the time, limited the usability of
compress and other popular archivers. Further informationabout
this compression technique is readily available on the Internet.
The gzip algorithm has no associated parameters that need tobe
specified with theZNAMEn and ZVALn keywords.

If ZCMPTYPE = ’GZIP 2’ then the bytes in the array of im-
age pixel values are shuffled into decreasing order of signifi-
cance before being compressed with the gzip algorithm. In other
words, bytes are shuffled so that the most significant byte of ev-
ery pixel occurs first, in order, followed by the next most sig-
nificant byte, and so on for every byte. Since the most significan
bytes of the pixel values often have very similar values, grouping
them together in this way often achieves better net compression
of the array. This is usually especially effective when compress-
ing floating-point arrays.

15.7.3. IRAF PLIO compression algorithm

If ZCMPTYPE = ’PLIO 1’ then the IRAF PLIO (Pixel List) al-
gorithm is used to compress and uncompress the image pixels.
The PLIO algorithm was developed to store integer-valued im-
age masks in a compressed form. Typical uses of image masks
are to segment images into regions, or to mark bad pixels. Such
masks often have large regions of constant value hence are
highly compressible. The compression algorithm used is based
on run-length encoding, with the ability to dynamically follow
level changes in the image, allowing a 16-bit encoding to be used
regardless of the image depth. The worst case performance oc-
curs when successive pixels have different values. Even in this
case the encoding will only require one word (16 bits) per mask
pixel, provided either the delta intensity change between pixels
is usually less than 12 bits, or the mask represents a zero floored
step function of constant height. The worst case cannot exceed
npix*2 words provided the mask depth is 24 bits or less.

A good compromise between storage efficiency and ef-
ficiency of runtime access, while keeping things simple, is
achieved if we maintain the compressed line lists as variable
length arrays of type short integer (16 bits per list element), re-
gardless of the mask depth. A line list consists of a series ofsim-
ple instructions which are executed in sequence to reconstruct a
line of the mask. Each 16 bit instruction consists of the signbit
(not used at present), a three bit opcode, and twelve bits of data,
i.e.:

+--+-----------+-----------------------------+

|16|15 13|12 1|

+--+-----------+-----------------------------+

| | opcode | data |

+--+---+

The significance of the data depends upon the instruction. The
instructions currently implemented are summarized in the table
below.

Instruction Opcode Description

ZN 00 Output N zeros

HN 04 Output N high values

PN 05 Output N-1 zeros plus one

SH 01 Set high value, absolute

IH,DH 02,03 Increment or decrement high

IS,DS 06,07 Like IH-DH, plus output one

In order to reconstruct a mask line, the application executing
these instructions is required to keep track of two values, the
current high value and the current position in the output line.
The detailed operation of each instruction is as follows:

ZN Zero the next N (=data) output pixels.
HN Set the next N output pixels to the current high value.
PN Zero the next N-1 output pixels, and set pixel N to the current

high value.
SH Set the high value (absolute rather than incremental), taking

the high 15 bits from the next word in the instruction stream,
and the low 12 bits from the current data value.

IH,DH Increment (IH) or decrement (DH) the current high value by
the data value. The current position is not affected.

IS,DS Increment (IS) or decrement (DS) the current high value by
the data value, and step, i.e., output one high value.

The high value is assumed to be set to 1 at the beginning of
a line, hence the IH,DH and IS,DS instructions are not normally
needed for Boolean masks. If the length of a line segment of con-
stant value or the difference between two successive high values
exceeds 4096 (12 bits), then multiple instructions are required to
describe the segment or intensity change.

15.7.4. H-Compress algorithm

Hcompress is an the image compression package written by
Richard L. White for use at the Space Telescope Science
Institute. Hcompress was used to compress the STScI Digitized
Sky Survey and has also been used to compress the preview im-
ages in the Hubble Data Archive. Briefly, the method used is:

1. a wavelet transform called the H-transform (a Haar trans-
form generalized to two dimensions), followed by

2. quantization that discards noise in the image while retaining
the signal on all scales, followed by

3. quadtree coding of the quantized coefficients.

The technique gives very good compression for astronomical
images and is relatively fast. The calculations are carriedout us-
ing integer arithmetic and are entirely reversible. Consequently,
the program can be used for either lossy or lossless compression,
with no special approach needed for the lossless case (e.g. there
is no need for a file of residuals.)

33

There are 2 user-defined parameters associated with the H-
Compress algorithm: an integer scale factor that determines the
amount of compression, and a Boolean parameter the specifies
whether the image should be smoothed during the decompres-
sion operation, to reduce residual artifacts in the image.

– Scale Factor.The integer scale parameter determines the
amount of compression. Scale= 0 or 1 leads to lossless
compression, i.e. the decompressed image has exactly the
same pixel values as the original image. If the scale factor
is greater than 1 then the compression is lossy: the decom-
pressed image will not be exactly the same as the original.
For astronomical images, lossless compression is generally
rather ineffective because the images have a good deal of
noise, which is inherently incompressible. However, if some
of this noise is discarded then the images compress very well.
The scale factor determines how much of the noise is dis-
carded. Setting scale to 2 times sigma, the RMS noise in the
image, usually results in compression by about a factor of
10 (i.e. the compressed image requires about 1.5 bits/pixel),
while producing a decompressed image that is nearly indis-
tinguishable from the original. In fact, the RMS difference
between the decompressed image and the original image will
be only about 1/2 sigma. Experiments indicate that this level
of loss has no noticeable effect on either the visual appear-
ance of the image or on quantitative analysis of the image
(e.g. measurements of positions and brightnesses of stars are
not adversely affected.)
Using a larger value for scale results in higher compres-
sion at the cost of larger differences between the compressed
and original images. A rough rule of thumb is that if scale
equals N sigma, then the image will compress to about 3/N
bits/pixel, and the RMS difference between the original and
the compressed image will be about N/4 sigma. This crude
relationship is inaccurate both for very high compression ra-
tios and for lossless compression, but it does at least give an
indication of what to expect of the compressed images.
For images in which the noise varies from pixel to pixel (e.g.
CCD images, where the noise is larger for brighter pixels),
the appropriate value for scale is determined by the RMS
noise level in the sky regions of the image. For images that
are essentially noiseless, any lossy compression is noticeable
under sufficiently close inspection of the image, but some
loss is nonetheless acceptable for typical applications. Note
that the quantization scheme used in Hcompress is not de-
signed to give images that appear as much like the original
as possible to the human eye, but rather is designed to pro-
duce images that are as similar as possible to the original un-
der quantitative analysis. Thus, the emphasis is on discarding
noise without affecting the signal rather than on discarding
components of the image that are not very noticeable to the
eye (as may be done, for example, by JPEG compression.)
The resulting compression scheme is not ideal for typical ter-
restrial images (though it is still a reasonably good method
for those images), but is believed to be close to optimal for
astronomical images.
It is not necessary to know what scale factor was used when
compressing the image in order to uncompress it, but it is still
useful to record the value that was used. It is recommended
that theZNAMEn andZVALn) pair of keywords be used for
this purpose, with

ZNAMEn = ’SCALE’

ZVALn = I

whereI is the integer scale value.
– Smoothing Flag.At high compressions factors the decom-

pressed image begins to appear blocky because of the way
information is discarded. This blockiness ness is greatly
reduced, producing more pleasing images, if the image is
smoothed slightly during decompression. When done prop-
erly, the smoothing will not affect any quantitative photo-
metric or astrometric measurements derived from the com-
pressed image. Of course, the smoothing should never be ap-
plied when the image has been losslessly compressed with a
scale factor (defined above) of 0 or 1.
The smoothing option only needs to be specified when un-
compressing the image, however, in many cases, this can best
be determined by the person or project that creates the com-
pressed image files. Thus it is recommended that the smooth-
ing flag be specified in the compressed image header with the
ZNAMEn andZVALn keywords with

ZNAMEn = ’SMOOTH’

ZVALn = 0 or 1

A value of 0 means no smoothing, and any other value means
smoothing is recommended. This should be regarded as only
a recommendation which the image decompression program
may override.

A paper describing Hcompress was published in the
Proceedings of the NASA Space and Earth Science Data
Compression Workshop, ed. James C. Tilton, Snowbird, Utah,
March 1992. This paper is reproduced in the Appendix B of this
document.

15.8. Random Number Generator

This portable random number generator algorithm comes from
the publication “Random number generators: good ones are hard
to find”, Communications of the ACM, Volume 31 , Issue 10
(October 1988) Pages: 1192 - 1201 which is available on the
Web. This algorithm basically just repeatedly evaluates the func-
tion seed= (a * seed) mod m, where the values of a and m are
shown below, but it is implemented in a way to avoid integer
overflow problems.

int random_generator(void) {

/* initialize an array of random numbers */

int ii;

double a = 16807.0;

double m = 2147483647.0;

double temp, seed;

float rand_value[10000];

/* initialize the random numbers */

seed = 1;

for (ii = 0; ii < N_RANDOM; ii++) {

temp = a * seed;

seed = temp -m * ((int) (temp / m));

rand_value[ii] = seed / m; /* divide by m to get

}

}

34

If implemented correctly, the 10000th value of seed will
equal 1043618065.

35

16. Tiled Table Compression Convention

16.1. Preface

16.2. Overview

This document describes a convention for compressing FITS bi-
nary tables that is modeled after the widely used FITS tiled-
image compression method (White et al. 2009). The uncom-
pressed table may be subdivided into tiles, each containingthe
same number of rows, then each column of data within each tile
is extracted, compressed, and stored as a variable-length array
of bytes in the output compressed table. Most of the header key-
words from the uncompressed table, with only a few limited ex-
ceptions, are copied verbatim to the header of the compressed
table. These header keywords remain uncompressed for efficient
access. The compressed table is itself a valid FITS binary table
that contains the same number and order of columns as in the
uncompressed table, and contains one row for each tile of rows
in the uncompressed table. All the currently supported compres-
sion algorithms (Rice and 2 variants of Gzip) are lossless, so no
information is lost when the table is compressed.

This convention currently only supports FITS binary tables
and cannot be used to compress FITS ASCII tables.

16.3. Compression Overview

The procedure for compressing a FITS binary table consists of
the following sequence of steps:

A. Divide Table into Tiles (Optional)
In order to limit the amount of data that must be managed at
one time, large FITS tables may be optionally divided into
tiles, each containing the same number of rows (except for
the last tile which may contain fewer rows). Each tile of the
table is compressed in turn and is stored in a single row in
the output compressed table. There is no fixed upper limit on
the allowed tile size, but for practical purposes, it is recom-
mended that it not exceed 100 MB so as to not impose too
great of a memory resource burden on software that com-
presses or uncompresses the table.

B. Decompose each Tile into the Component Columns
FITS binary tables are physically stored in row-by-row se-
quential order, such that the data values for the first row in
each column are followed by the values in the second row,
and so on. Because adjacent columns in binary tables can
contain very non-homogeneous types of data, it can be chal-
lenging to efficiently compress the native stream of bytes in
the FITS tables. For this reason, the table is first decomposed
into its component columns, and then each column of data is
compressed separately. This also allows one to choose the
most efficient compression algorithm for each column.

C. Compress Each Column of Data
Each column of data is compressed with a suitable compres-
sion algorithm. If the table is divided into tiles, then the same
compression algorithm must be applied to a given column
in every tile. In the case of variable-length array columns,
(where the data are stored in the table heap), each individual
variable length vector is compressed separately.

D. Store the Compressed Bytes
The compressed stream of bytes for each column is writ-
ten into the corresponding column in the output table. The
compressed table has exactly the same number and order

of columns as the input table, however the data type of the
columns in the output table will all have a variable-length
byte data type, with TFORMn= ’1QB’, which is appropri-
ate for storing the compressed stream of bytes. Each row in
the compressed table corresponds to a tile of rows in the un-
compressed table.
In the case of variable-length array columns, the array of de-
scriptors that point to each compressed variable-length ar-
ray, as well as the array of descriptors from the input un-
compressed table, are also compressed and written into the
corresponding column in the compressed table. See section
6 for more details.

16.4. Compression Directive Keywords

The following optional ‘compression directive’ keywords,if
present in the header of the table that is to be compressed, pro-
vide guidance to the compression software on how the table
should be compressed. The compression software will attempt
to obey these directives, but if that is not possible, the software
may disregard them and use an appropriate alternative.

– FZTILELN The value field of this keyword shall contain an
integer that specifies the requested number of table rows in
each tile which are to be compressed as a group.

– FZALGOR The value field of this keyword shall contain a
character string giving the mnemonic name of the algorithm
that is requested to be used by default to compress every col-
umn in the table. The current allowed values areGZIP 1,
GZIP 2, andRICE 1. The corresponding algorithms are de-
scribed in Section 5.

– FZALGn. The value field of these keywords shall contain a
character string giving the mnemonic name of the algorithm
that is requested to be used to compress columnn of the
table. The current allowed values are the same as for the
FZALGOR keyword. TheFZALGn keyword takes precedence
over theFZALGOR keyword in determining which algorithm
to use for a particular column if both keywords are present.
If the column cannot be compressed with the requested algo-
rithm (e.g., if it has an inappropriate data type), then a default
compression algorithm will be used instead.

16.5. Keywords in the Compressed Table

With only a few exceptions, all the keywords from the uncom-
pressed table are copied verbatim, in order, into the headerof the
compressed table. The header keywords remain uncompressed
for ease of access. Note in particular that the values of the re-
served column descriptor keywordsTTYPEn, TUNITn, TSCALn,
TZEROn,TNULLn,TDISPn, andTDIMn, as well as all the column-
specific WCS keywords defined in the FITS standard, have the
same values in both the original and in the compressed table,
with the understanding that these keywords apply to the uncom-
pressed data values.

The only keywords that are not copied verbatim from the un-
compressed table header to the compressed table header are the
mandatoryNAXIS1, NAXIS2, PCOUNT, andTFORMn keywords,
and the optionalCHECKSUM, DATASUM, and THEAP keywords.
These keywords must necessarily describe the contents of the
compressed table itself. The original values of these keywords
in the uncompressed table are stored in a new set of reserved
keywords in the compressed table header. The complete set of

36

keywords that have a reserved meaning within the header of a
tile-compressed binary table are listed below:

– ZTABLE (required keyword). The value field of this keyword
shall contain the logical value T. This indicates that the FITS
binary table extension contains a tile-compressed binary ta-
ble.

– ZNAXIS1 (required keyword). The value field of this key-
word shall contain an integer that gives the value of the
NAXIS1 keyword in the original uncompressed FITS table
header. This represents the width in bytes of each row in the
uncompressed table.

– ZNAXIS2 (required keyword). The value field of this key-
word shall contain an integer that gives the value of the
NAXIS2 keyword in the original uncompressed FITS table
header. This represents the number of rows in the uncom-
pressed table.

– ZPCOUNT (required keyword). The value field of this key-
word shall contain an integer that gives the value of the
PCOUNT keyword in the original uncompressed FITS table
header.

– ZFORMn (required indexed keywords). These required array
keywords supply the character string value of the corre-
spondingTFORMn keyword that defines the data type of the
column in the original uncompressed FITS table.

– ZTHEAP (optional keyword). The value field of this keyword
shall contain an integer that gives the value of theTHEAP

keyword if present in the original uncompressed FITS table
header. In practice, this keyword is rarely used.

– ZTILELEN (required keyword). The value of this keyword
shall contain an integer representing the number of rows of
data from the original binary table that are contained in each
tile of the compressed table. The number of rows in the last
tile may be less than in the previous tiles. Note that if the en-
tire table is compressed as a single tile, then the compressed
table will only contains a single row, and theZTILELEN and
ZNAXIS2 keywords will have the same value.

– ZCTYPn (required indexed keywords). The value field of
these keywords shall contain a character string giving the
mnemonic name of the algorithm that was used to com-
press columnn of the table. The current allowed values are
GZIP 1, GZIP 2, andRICE 1, and the corresponding algo-
rithms are described in Section 5.

– ZHECKSUM (optional keyword). The value field of this key-
word shall contain a character string that gives the value of
the CHECKSUM keyword in the original uncompressed FITS
table header.

– ZDATASUM (optional keyword). The value field of this key-
word shall contain an integer that gives the value of the
DATASUM keyword in the original uncompressed FITS table
header.

16.6. Supported Compression Algorithms

This section describes the currently supported compression al-
gorithms. Other compression algorithms may be added in the
future.

16.6.1. GZIP 1

This lossless compression algorithm is designated by the key-
word ZCTYPn = ’GZIP 1’. Gzip is the compression algorithm

used in the widely distributed GNU free software utility of the
same name. It was created by Jean-loup Gailly and Mark Adler.
It is based on the DEFLATE algorithm, which is a combina-
tion of LZ77 and Huffman coding. Further information about
this compression technique is readily available on the Web.The
“gzip -1” option is generally used which significantly improves
the compression speed with only a small loss of compression
efficiency.

It is important to note that any numerical data values must be
arranged in big-endian byte order (the FITS standard) before the
array of bytes is compressed.

16.6.2. GZIP 2

This lossless compression algorithm is designated by the key-
wordZCTYPn = ’GZIP 2’. This algorithm is a variation of the
GZIP 1 algorithm in which the bytes in the arrays of numeric
data columns are preprocessed by shuffling them so that they are
arranged in order of decreasing significance before being com-
pressed. For example, a 5-element array of 2-byte (16-bit) inte-
ger values, with an original big-endian byte order of

A1 A2 B1 B2 C1 C2 D1 D2 E1 E2,

will have the following byte order after shuffling the bytes:

A1 B1 C1 D1 E1 A2 B2 C2 D2 E2.

where A1, B1, C1, and D1 are the most significant bytes from
each of the integer values. Byte shuffling can only be performed
for numeric binary table columns that haveTFORMn data type
codes ofI, J, K, E, D, C, or M. The bytes in columns that
have aL, X, or A type code are never shuffled.

This byte-shuffling technique has been shown to be espe-
cially beneficial when compressing floating-point values be-
cause the bytes containing the exponent and the most significant
bits of the mantissa are often similar for all the floating point
values in the array. Thus these repetitive byte values generally
compress very well when grouped together in this way. HDF
Group has used this byte-shuffling technique when compressing
HDF5 data files (HDF 2000).

16.6.3. RICE 1

This lossless compression algorithm is designated by the key-
word ZCTYPn = ’RICE 1’ and may only be applied to integer
data type columns that haveTTYPEn data type code values of
’B’, ’I’, or ’J’. The Rice algorithm (Rice, 1993) is very sim-
ple and fast. It requires only enough memory to hold a single
block of 32 integers at a time and is able to adapt very quickly
to changes in the input array statistics.

16.7. Compressing Variable-Length Array Columns

Compression of binary tables that contain variable-lengtharray
(VLA) columns (with aP or Q data type code) requires special
consideration because the data values in these columns are not
stored directly in the table, but instead are stored in what is called
the ‘data heap’ which follows the main table. The VLA column
in the main data table itself only contains a ‘descriptor’, which
is composed of 2 integers that give the size and location of the
actual array in the heap. When compressing a variable lengthar-
ray column, one must first process each individual VLA in turn

37

by reading it from the uncompressed table, compressing it, then
writing the compressed bytes to the heap in the compressed ta-
ble. The descriptors that point to these compressed VLAs must
be stored in a temporary array of descriptors that has been allo-
cated for this purpose. Once all the individual VLAs in the col-
umn have been processed, that temporary array of descriptors is
then itself compressed with GZIP1, and then finally written into
the heap of the compressed table.

There is one other complexity that must be addressed when
dealing with VLA columns: one needs to know the original de-
scriptor values to be able to write the uncompressed VLAs back
into the same location in the heap as in the original uncom-
pressed table. For this reason, we concatenate the array of de-
scriptors from the uncompressed table onto the end of the tem-
porary array of descriptors (to the compressed VLAs in the com-
pressed table) before the 2 combined arrays of descriptors are
compressed and written into the heap in the compressed table.

When uncompressing a VLA column, 2 stages of uncom-
pression must be performed: First, the combined array of de-
scriptors must be uncompressed, then these descriptors areused
one by one to read the compressed VLA from the compressed
table, uncompress it, and then write it back into the correctlo-
cation in the uncompressed table. Note also that the descriptors
to the compressed VLAs are always 64-bit Q-type descriptors,
but the descriptors from the original uncompressed table may be
either Q-type or P-type.

The following example illustrates how this works in prac-
tice: suppose one compresses a 100 row table containing a col-
umn of 2-byte integer variable length arrays (withTFORMn =

’1PI’). When compressing this column, each of the 100 indi-
vidual VLAs are read from the uncompressed table, compressed
with the appropriate algorithm, and then written to the corre-
spondingTFORMn = ’1QB’ column in the compressed table.
After all the VLAs have been processed, the array of 100 P-type
descriptors from the uncompressed table are concatenated onto
the end of the temporary array of 100 ’Q-type descriptors from
the compressed table, and this combined array is compressed
with the GZIP1 algorithm and written into the compressed ta-
ble.

References
HDF 2000, “Performance Evaluation Report: gzip,

bzip2 compression with and without shuffling,”
http://www.hdfgroup.org/HDF5/doc_resource/H5Shuffle_Perf.pdf

Rice, R. F., Yeh, P.-S., and Miller, W. H. 1993, in Proc. of the
9th AIAA Computing in Aerospace Conf., AIAA-93-4541-
CP, American Institute of Aeronautics and Astronautics

White, R. L., Greenfield, P., Pence, W., Tody, D., and
Seaman, R. 2009, “Tiled Image Compression Convention”,
http://fits.gsfc.nasa.gov/registry/tilecompression.html

38

17. A Hierarchical Grouping Convention

17.1. Preface

This paper describes a grouping convention for FITS that fa-
cilitates the construction of hierarchical associations of Header
Data Units (HDUs). The grouping convention uses FITS table
structures (ASCII or binary) to encapsulate pertinent informa-
tion about the HDUs belonging to a group. Group members may
reside in a single FITS file or be distributed in many FITS files;
the FITS files themselves may reside on different computer sys-
tems.

17.2. Introduction

The rules for generalized extensions in FITS (Grosbølet al.,
1988) provide for FITS formatted files containing more than one
header data unit. By using combinations of ASCII tables (Harten
et al., 1988), binary tables (Cottonet al., 1994) and image exten-
sions (Ponzet al., 1994) related data sets requiring different data
structures may be stored in the same FITS file, each within its
own HDU. Unfortunately, once the related data sets are segre-
gated into separate HDUs the relationship between them is often
lost.

The FITS standard currently allows for simple hierarchical
associations of HDUs within a single FITS file through use of
the EXTLEVEL keyword. However, this mechanism has several
major limitations. First, its use is not well defined. Different or-
ganizations may use EXTLEVEL for widely varying purposes
and still not violate the FITS standard. Secondly, it does not
specify a mechanism for defining distinct multiplegroups of
HDUs within a FITS file. Lastly, it cannot be used to associate
HDUs residing in different FITS files. Except for very simple
cases, FITS contains no mechanism for creating or preserving
associations between HDUs or groups of HDUs.

As the volume and complexity of FITS formatted data grows,
the need for a recognized and versatile HDU grouping mecha-
nism increases. Individuals can be overwhelmed trying to man-
age and analyze large data sets unless those sets are logically
organized. Software tools also require data organization in order
to access all necessary components of an observation, simulation
or experimental data set.

As an example of where grouping capabilities within FITS
would be useful, consider the following. It is desirable to com-
bine a set of observations from a given time period into a single
FITS file for transport and archival purposes. For each observa-
tion there is an observation log, an event list, a derived image
and a set of instrument calibration data; furthermore, several ob-
servations share a common set of calibration data. By using a
grouping mechanism each [log, event list, image, calibration] set
could be logically tagged as an associated observation group and
the calibration data could be made a part of many different ob-
servation groups, thus eliminating the need to store it morethan
once. Software could retrieve all the information about a given
observation simply by extracting those HDUs defined in the ta-
ble that identifies members of the group. Also, observationsof
the same object from different observational periods could be
combined into a group and accessed as a unit, even though the
HDU sets comprising the different observations reside in sepa-
rate FITS files.

The following sections describe a scheme for implement-
ing a hierarchical grouping of header data units within single

and multiple FITS files. Section 2 discusses the content of ta-
ble extensions used to define HDU groupings. Section 3 lists
those keywords recommended for headers of group member ex-
tensions. Finally, Section 4 provides sample headers from FITS
table extensions containing grouping structures.

17.3. Group Tables

A group table, as defined in this convention, is a FITS ta-
ble extension that contains a list of all the associated mem-
ber HDUs in the group. Group tables may be represented by
either FITS ASCII tables (XTENSION= ’TABLE ’) or bi-
nary tables (XTENSION= ’BINTABLE’), and are uniquely dis-
tinguished from other types of FITS tables by having the
EXTNAME = ’GROUPING’ keyword and value in the header. The
other required or recommended keywords and columns in a
group table are described in the following sections.

There may be zero, one, or more group tables within a given
FITS file. Each group table may reference any number of HDUs.
The entire set of HDUs referenced in a group table, along with
the group table itself, form agroup . Individual HDUs referenced
in a group table are said to bemembers of the group or group
members.

Groups can contain any type and mix of HDU. This includes
all of the IAU-endorsed extensions as well as other extensions
that conform to the requirements for generalized FITS exten-
sions. Note that a group may also contain other groups as mem-
bers, since a group table is itself a FITS extension. This feature
allows for the construction of hierarchical structures of HDUs
within a single FITS file or across many FITS files.

17.3.1. Group Member Identification Methods

Group tables specify the names and locations of FITS files con-
taining member HDUs as well as identifying members within
their FITS files. The name and location of each FITS file is speci-
fied by using the World-Wide Web (Berners-Lee, 1994) Uniform
Resource Identifiers, or URIs. All current and future forms of
URIs, such as Uniform Resource Locators (URL) and the pro-
posed Uniform Resource Names (URN), shall constitute valid
names, although the group table must specify the type of URI
being used. If the group member resides in a different FITS file
but on the same computer system then partial URIs (specifically
partial URLs) may be used instead of absolute URIs to specify
the member’s file location. If the group member resides in the
same FITS file as the group table itself, then the URI field may
be left blank.

The location of member HDUs within FITS files may be
specified in two different ways, either byreference or by abso-
lute position. The reference identification method uses the val-
ues of the XTENSION, EXTNAME and EXTVER keywords to
uniquely identify the member HDU within the FITS file. The po-
sition method uses the HDU order number to identify members,
with the primary array having order value 0, the first extension
order value 1, and so on. Users may choose either or both iden-
tification methods when constructing a group table.

While the reference method is not invalidated by a reorder-
ing of HDU positions within FITS files, it does require that each
member HDU have a unique set of (non-FITS-required) key-
word values, Thus, this method may present problems for FITS
files whose headers cannot be easily modified, such as FITS files

39

on read-only media. The position identification method provides
for quick “random” access to the member HDUs, since software
does not have to sort though each extension looking for the cor-
rect set of keyword values, but will be affected if the order of
member HDUs within their FITS files is changed (please note:
there is nothing within the current FITS standard governinghow
or when HDUs may be reordered within their files).

17.3.2. Group Table Keywords

In addition to the standard required FITS table extension key-
words, the following keywords are required in the header of a
group table:

– EXTNAME (character) : This value of the FITS reserved
keyword uniquely identifies that this FITS extension con-
tains a group table. For group tables EXTNAME must have
the value ‘GROUPING’.

– EXTVER (positive integer): The value of this FITS re-
served keyword serves as a group ID number that uniquely
distinguishes this group from any other groups that may be
defined in the same FITS file. All HDUs in a given FITS
file with EXTNAME = ’GROUPING’ must have a unique in-
teger EXTVER value. This group number may also be used
in the header of each group member to identify the group(s)
to which the member belongs (see section 17.3.3, GRPIDn
keyword).

The following keyword is strongly recommended for inclu-
sion in the header of each group table:

– GRPNAME (character): This keyword contains the name
associated with the group table. GRPNAME values are case-
insensitive and should only contain letters, digits, and the
underscore character (and not contain any embedded blank
(ASCII 32) characters).

17.3.3. Group Table Columns

The number of columns required in a group table depends on
which method is used to identify the members (and recall that
both methods may be used within the same group). If the mem-
bers are identified by reference then the following columns are
required:

– TTYPEn = ’MEMBER_XTENSION’ – character field:
Contains the value of the XTENSION keyword from the
group member’s header. In the case of primary HDUs
where there is no required XTENSION keyword, the
value of ‘PRIMARY’ will be used instead. Therefore, the
current valid entries for this column are’PRIMARY ’,
’TABLE ’, ’BINTABLE’, ’IMAGE ’ or any other IAU
FITS Working Group registered XTENSION value. Note
that the single quotation marks are used only to designate
the string boundaries and are NOT to be included with the
XTENSION values in the column entries; the trailing blanks
shown in each string are optional. This field may contain
the FITS null value appropriate for this column type if the
value is unknown (e.g., if the position identification method
described below is used to identify the member location).

– TTYPEn = ’MEMBER_NAME’ – character field: Contains
the value of the EXTNAME keyword from the group mem-
ber’s header. In the case of primary HDUs where the
EXTNAME keyword is not defined or when the member ex-
tension has no EXTNAME keyword present, this field may
contain the FITS null value appropriate for the column type.

– TTYPEn = ’MEMBER_VERSION’ – integer field: Contains
the value of the EXTVER keyword from the group member’s
header. In the case of primary HDUs, or if the EXTVER key-
word is not present in the member header then a value of 1
should be assumed.

If members are identified by file position then the following
column is required:

– TTYPEn = ’MEMBER_POSITION’ – integer field:
Contains a group member’s position within its FITS
file. The file’s primary header is given a position value of 0,
the first extension is given a position value of 1, and so on. If
for some reason a group member’s ‘MEMBERPOSITION’
value becomes invalid or undefined, then this column field
should be filled with the FITS null value appropriate for the
column format.

If some or all of the group members reside in FITS files sep-
arate from the group table itself then the following two columns
are also required:

– TTYPEn = ’MEMBER_LOCATION’ – character field:
Contains the location of the group member’s FITS file using
Uniform Resource Identifiers. If the FITS file resides on
the same computer system as the group table, then partial
URIs may be used instead of absolute URIs. If the group
member resides in the same FITS file as the group table, or
the MEMBERLOCATION value becomes invalid then this
field may be filled with the FITS null value appropriate for
the column type.

– TTYPEn = ’MEMBER_URI_TYPE’ – character field:
Contains the mne-monic for the Uniform Resource Identifier
type used in the corresponding MEMBERLOCATION
field. Recommended values for this column field are ‘URL’
for the Uniform Resource Locator and ‘URN’ for the
Uniform Resource Name. As other URI types are defined
their mnemonics will also become acceptable values for this
field. In cases where the MEMBERURI TYPE is undefined
(such as a null or blank MEMBERLOCATION field value)
this field may contain the FITS null value appropriate for
the column type.

Besides the table columns defined above, a group table
may contain any number of user defined columns. Group ta-
ble columns may appear in any order within the table and their
TTYPEn values are not to be considered case-sensitive.

17.4. Keywords for Group Member Extensions

No additional keywords are required for HDUs that are mem-
bers of a group. This rule is to ensure that all currently existing
FITS files and their constituent HDUs may all be part of this con-
vention. There are, however, several grouping related keywords
whose presence is strongly recommended in newly created head-
ers. The description of these keywords follow.

40

– EXTNAME (character): This keyword is the FITS re-
served keyword EXTNAME. The use of EXTNAME al-
lows HDUs of a given XTENSION type with similar struc-
ture and content to be identified with a common name tag.
Additionally, the grouping convention uses EXTNAME to
identify group members by reference (see section 17.2).
For any HDU belonging to a group, the combination of
XTENSION, EXTNAME and EXTVER keyword values
should uniquely identify the HDU within its FITS file. An
exception to this rule occurs when group tables are them-
selves members of a group. In this case the combination
of EXTNAME and EXTVER keyword values alone must
uniquely identify the HDU within its FITS file. This is be-
cause within a given FITS file the group tables may be built
from a mix of ASCII (XTENSION= ’TABLE ’) and binary
tables (XTENSION= ’BINTABLE’).

– EXTVER (integer): This keyword is the FITS reserved
keyword EXTVER. The use of EXTVER allows unique
identification of HDUs with a given XTENSION type and
EXTNAME value. Additionally, the grouping convention
uses EXTVER to identify group members by reference (see
section 17.2). For any HDU belonging to a group, the combi-
nation of XTENSION, EXTNAME and EXTVER keyword
values should uniquely identify the HDU within its FITS file;
however, please note the exception outlined above.

– GRPIDn (integer): A series of indexed keywords that de-
note the group(s) to which an HDU belongs. The value of
GRPIDn is the EXTVER value of the nth group table that
the HDU is a member of. In this sense, the EXTVER value
of a group table defines a unique ID for the group within a
FITS file. If the value of GRPIDn is negative, then the HDU
is a member of a group defined in another file. In this case the
absolute value of GRPIDn is the EXTVER value of the ex-
ternal group table, and the corresponding GRPLCn keyword
holds the URI of the FITS file containing the group’s table.
The GRPIDn keywords (and their associated GRPLCn key-
words) not only identify HDUs as members of groups, but
also allow group members to “point” back to their group ta-
bles. Any software that might change the position or nature
of the HDU would know that it was a member of a group and
that the group table would require updating.

– GRPLCn (character): A series of indexed keywords that
contain the Uniform Resource Identifiers corresponding to
the GRPIDn keyword. The GRPLCn values follow the
same syntax rules as those specified for the group table’s
MEMBER LOCATION column (see section 17.3.2). It is
unnecessary to have a GRPLCn keyword accompany a
GRPIDn keyword when the value of the GRPIDn keyword
is positive. Alternatively, the value of the GRPLCn keywords
may be reference strings that refer to the member’s group ta-
ble HDU (see section 17.6).

17.5. Example Group Table Headers

The following are examples of valid group table headers thatuse
different combinations of identification methods.

Example 1: A group containing five members all of which
reside in the same file as the group table. This group is itselfa
member of two other groups and both of those groups’ tables
reside in the same file as this extension. The member position
identification method is used to locate member HDUs.

XTENSION= ’BINTABLE’ / This is a binary table

BITPIX = 8 / Table contains 8-bit bytes

NAXIS = 2 / Number of axis

NAXIS1 = 4 / Width of table in bytes

NAXIS2 = 5 / Number of member entries

GCOUNT = 1 / Mandatory FITS keyword

PCOUNT = 0 / Number of bytes in HEAP area

TFIELDS = 1 / Number of columns in table

EXTNAME = ’GROUPING’ / This BINTABLE contains a group

EXTVER = 3 / The ID number of this group

GRPID1 = 1 / Part of group 1

GRPID2 = 2 / Part of group 2

TTYPE1 = ’MEMBER_POSITION’ / Position of member within file

TFORM1 = ’1J’ / Datatype descriptor

END

Example 2: A group containing 150 members, some of
which reside in FITS files different from that of the group ta-
ble. This group is not a member of any other group, although it
is the seventh group table defined in the FITS file. All member
identification methods are used.

XTENSION= ’BINTABLE’ / This is a binary table

BITPIX = 8 / Table contains 8-bit bytes

NAXIS = 2 / Number of axis

NAXIS1 = 79 / Width of table in bytes

NAXIS2 = 150 / Number of member entries

GCOUNT = 1 / Mandatory FITS keyword

PCOUNT = 0 / Number of bytes in HEAP area

TFIELDS = 6 / Number of columns in table

EXTNAME = ’GROUPING’ / This BINTABLE contains a group

EXTVER = 7 / The ID number of this group

TTYPE1 = ’MEMBER_LOCATION’ / URI of file containing member

TFORM1 = ’30A ’ / Datatype descriptor

TTYPE2 = ’MEMBER_URI_TYPE’ / URI type of MEMBER_LOCATION

TFORM2 = ’3A ’ / Datatype descriptor

TTYPE3 = ’MEMBER_POSITION’ / Position of member within file

TFORM3 = ’1J ’ / Datatype descriptor

TTYPE4 = ’MEMBER_XTENSION’ / XTENSION keyword value of member

TFORM4 = ’8A ’ / Datatype descriptor

TTYPE5 = ’MEMBER_NAME’ / EXTNAME keyword value of member

TFORM5 = ’30A ’ / Datatype descriptor

TTYPE6 = ’MEMBER_VERSION’ / EXTVER keyword value of member

TFORM6 = ’1J ’ / Datatype descriptor

END

41

Example 3: A group containing 17 members, some of which
reside in FITS files different from that of the group table. This
group is a member of six other groups, two of which are defined
in FITS files on other computer systems and one that is defined in
a FITS file on the same computer system. The member reference
identification and member file location methods are used. Two
user defined columns are also present.

XTENSION= ’BINTABLE’ / This is a binary table

BITPIX = 8 / Table contains 8-bit bytes

NAXIS = 2 / Number of axis

NAXIS1 = 180 / Width of table in bytes

NAXIS2 = 17 / Number of member entries

GCOUNT = 1 / Mandatory FITS keyword

PCOUNT = 0 / Number of bytes in HEAP area

TFIELDS = 7 / Number of columns in table

EXTNAME = ’GROUPING’ / This BINTABLE contains a group

EXTVER = 7 / The ID number of this group

GRPID1 = 3 / Member of group 3

GRPID2 = 6 / Member of group 6

GRPID3 = 18 / Member of group 18

GRPID4 = -1 / Member of external group 1

GRPLC4 = ’http://fits.gsfc.nasa.gov/FITS/file1.fits’ / location of

COMMENT FITS file containing group

GRPID5 = -5 / Member of external group 5

GRPLC5 = ’/FITS/file5.fits’ / Location of file containing group

GRPID6 = -2 / Member of external group 2

GRPLC6 = ’http://www.noao.edu/irafdir/file2.fits’ / location of

COMMENT FITS file containing group

TTYPE1 = ’USER_INFO_1’ / A user supplied column

TFORM1 = ’25J ’ / Datatype descriptor

TTYPE2 = ’MEMBER_LOCATION’ / URI of file containing member HDU

TFORM2 = ’30A ’ / Datatype descriptor

TTYPE3 = ’MEMBER_XTENSION’ / XTENSION keyword value of member

TFORM3 = ’8A ’ / Datatype descriptor

TTYPE4 = ’MEMBER_NAME’ / EXTNAME keyword value of member

TFORM4 = ’30A ’ / Datatype descriptor

TTYPE5 = ’USER_INFO_2’ / A user supplied column

TFORM5 = ’5A ’ / Datatype descriptor

TTYPE6 = ’MEMBER_VERSION’ / EXTVER keyword value of member

TFORM6 = ’1J ’ / Datatype descriptor

TTYPE7 = ’MEMBER_URI_TYPE’ / URI type of MEMBER_LOCATION field

TFORM7 = ’3A ’ / Datatype descriptor

END

Example 4: A group containing 82 members, some of which
reside in FITS files different from that of the group table. This
group is a member of three other groups, and makes use of the
member position and member file location methods. One user
defined column is present. Note that in this example an ASCII
table (as opposed to a binary table) is used to define the group.

XTENSION= ’TABLE ’ / This is an ASCII table

BITPIX = 8 / Table contains 8-bit ASCII

NAXIS = 2 / Number of axis

NAXIS1 = 46 / Width of table in bytes

NAXIS2 = 82 / Number of member entries

GCOUNT = 1 / Mandatory FITS keyword

PCOUNT = 0 / Mandatory FITS keyword

TFIELDS = 4 / Number of columns in table

EXTNAME = ’GROUPING’ / This TABLE contains a group

EXTVER = 31 / The ID number of this group

GRPID1 = 3 / Member of group 3

GRPID2 = 9 / Member of group 9

GRPID3 = 27 / Member of group 27

TTYPE1 = ’USER_INFO_1’ / A user supplied column

TFORM1 = ’E10.3 ’ / Datatype descriptor

TBCOL1 = 1 / Starting table column for field

TTYPE2 = ’MEMBER_LOCATION’ / URI of file containing member

TFORM2 = ’A30 ’ / Datatype descriptor

TBCOL2 = 11 / Starting table column for field

TTYPE3 = ’MEMBER_URI_TYPE’ / URI type of MEMBER_LOCATION

TFORM3 = ’A3 ’ / Datatype descriptor

TBCOL3 = 41 / Starting table column for field

TTYPE4 = ’MEMBER_POSITION’ / XTENSION keyword value of member

TFORM4 = ’I3 ’ / Datatype descriptor

TBCOL4 = 44 / Starting table column for field

END

17.6. Acknowledgments

We gratefully acknowledge the support of the NASA Applied
Information Systems Research Program, underwhich this effort
is partially funded.

17.7. Appendix I. Reference Strings

In certain circumstances, it may be convenient to point, orrefer,
to a HDU from another HDU. Such references neither imply or
require the hierarchical association information as allowed by
grouping table structures, but still serve a similar function by
pointing to another data structure residing in a separate HDU.

If referring to a single HDU is preferable to forming a hier-
archical association and including the given HDU as a member,
then keyword and table column values may employ the same
syntax as used for the identification of group members. For no-
tational convenience, thus allowing all the information tobe in-
cluded in a single keyword value or table column entry, the ref-
erence should be expressed as a single character string of either
type 1 format,

’MEMBER LOCATION’:’MEMBER XTENSION’:’MEMBER EXTNAME’:’MEMBER EXTVER’

or of type 2 format,
’MEMBER LOCATION’:’MEMBER POSITION’

where each quantity enclosed in single quotation marks is re-
placed by its corresponding value as defined in section 17.3.2.
The colons (’:’, ASCII 58) appearing in the expressions are sig-

42

nificant and must be used to separate the fields of the string. Such
expressions are known asreference strings.

Default values in the HDU reference strings are permitted
but must obey the following rules. Note that by implication aref-
erence string may begin with a colon field separator (’:’, ASCII
58) but may not terminate with a colon field separator.

– For type 1 format reference strings, the
’MEMBER XTENSION’ and ’MEMBER EXTNAME’
fields must always be specified.

– For type 1 format reference strings, a non-existent
’MEMBER EXTVER’ is permitted and infers an EXTVER
value of 1.

– For type 2 format reference strings, one of the
two possible fields (’MEMBERLOCATION’ or
’MEMBER POSITION’) must always be specified, but see
the rule below on non-existent ’MEMBERLOCATION’
fields.

– Type 1 and type 2 format reference strings with a non-
existent ’MEMBERLOCATION’ value are permitted and
infer that the referred-to HDU resides in the same FITS file
as the HDU containing the reference string. To denote the ab-
sence of the ’MEMBERLOCATION’ value, the first char-
acter of the reference string shall be a colon (’:’, ASCII 58).

– A reference string containing only the
’MEMBER LOCATION’ field shall infer a type 2 for-
mat with a ’MEMBERPOSITION’ value of 1 (i.e., the
first non-primary array FITS file extension). Note that a
reference string of this form completely conforms to the
syntax of a URI.

Below are examples of valid reference strings. In each case
the following values are assumed:

– ’MEMBER LOCATION’ =

file://www.archive.edu/archive/sample.fits,
– ’MEMBER XTENSION’ = BINTABLE,
– ’MEMBER EXTNAME’ = EVENTS,
– ’MEMBER EXTVER’ = 1, and
– ’MEMBER POSITION’= 1.

Note that the values of ’MEMBEREXTVER’ and
’MEMBER POSITION’ chosen for the examples demon-
strate the use of the default reference string fields; the choice of
different values would make the default cases invalid.

– If the referenced HDU resides in a different FITS file and on
a different computer system:
– file://www.archive.edu/archive/sample.fits:BINTABLE:EVENTS:1
– file://www.archive.edu/archive/sample.fits:BINTABLE:EVENTS

(note: using default value for ’MEMBEREXTVER’)
– file://www.archive.edu/archive/sample.fits:1
– file://www.archive.edu/archive/sample.fits

(note: using default value for ’MEMBERPOSITION’)
– If the referenced HDU resides in a different FITS file but on

the same computer system:
– /archive/sample.fits:BINTABLE:EVENTS:1

(note: absolute file path specified)
– archive/sample.fits:BINTABLE:EVENTS:1

(note: relative file path specified)
– sample.fits:BINTABLE:EVENTS:1

(note: relative file path specified)
– /archive/sample.fits:BINTABLE:EVENTS

(note: using default value for ’MEMBEREXTVER’)

– /archive/sample.fits:1
– sample.fits

(note: using default value for ’MEMBERPOSITION’)
– If the referenced HDU resides in the same FITS file:

– :BINTABLE:EVENTS:1
– :BINTABLE:EVENTS

(note: using default value for ’MEMBEREXTVER’)
– :1

Please note that reference strings are meant only to supple-
ment and enhance the hierarchical grouping convention as de-
scribed above. In particular, reference strings should be used
sparingly and with care; they do not provide the same level
of data format structure and long-term archival stability as the
grouping tables themselves.

43

17.8. Appendix II. Application Program Interface

This appendix describes an application program interface (API)
in ANSI C that was implimented by the ISDC to facility cre-
ating and managing grouping tables by the INTEGRAL mis-
sion application software. Use of this particular API is notre-
quired and is shown here only for informational purposes. This
API software is distributed and supported as a component of the
CFITSIO software library that is maintained by the HEASARC
at NASA/GSFC.

This API provides functions for the creation and manipu-
lation of FITS HDU Groups, as defined in the ”Hierarchical
Grouping Convention for FITS” A group is a collection of HDUs
whose association is defined by agrouping table. HDUs which
are part of a group are referred to asmember HDUs or sim-
ply asmembers. Grouping table member HDUs may themselves
be grouping tables, thus allowing for the construction of open-
ended hierarchies of HDUs.

Grouping tables contain one row for each member HDU.
The grouping table columns provide identification information
that allows applications to reference or ”point to” the member
HDUs. Member HDUs are expected, but not required, to con-
tain a set of GRPIDn/GRPLCn keywords in their headers for
each grouping table that they are referenced by. In this sense, the
GRPIDn/GRPLCn keywords ”link” the member HDU back to
its Grouping table. Note that a member HDU need not reside in
the same FITS file as its grouping table, and that a given HDU
may be referenced by up to 999 grouping tables simultaneously.

Grouping tables are implemented as FITS binary tables with
up to six pre-defined column TTYPEn values:
’MEMBER XTENSION’, ’MEMBER NAME’,
’MEMBER VERSION’, ’MEMBER POSITION’,
’MEMBER URI TYPE’ and ’MEMBER LOCATION’.
The first three columns allow member HDUs to be identified
by reference to their XTENSION, EXTNAME and EXTVER
keyword values. The fourth column allows member HDUs to
be identified by HDU position within their FITS file. The last
two columns identify the FITS file in which the member HDU
resides, if different from the grouping table FITS file.

Additional user defined ”auxiliary” columns may also be in-
cluded with any grouping table. When a grouping table is copied
or modified the presence of auxiliary columns is always taken
into account by the grouping support functions; however, the
grouping support functions cannot directly make use of thisdata.

If a grouping table column is defined but the corresponding
member HDU information is unavailable then a null value of
the appropriate data type is inserted in the column field. Integer
columns (MEMBERPOSITION, MEMBERVERSION) are
defined with a TNULLn value of zero (0). Character field
columns (MEMBERXTENSION, MEMBER NAME,
MEMBER URI TYPE, MEMBER LOCATION) utilize an
ASCII null character to denote a null field value.

The grouping support functions belong to two basic cate-
gories: those that work with grouping table HDUs and those that
work with member HDUs. Two functions, fitscopy group() and
fits removegroup(), have the option to recursively copy/delete
entire groups. Care should be taken when employing these func-
tions in recursive mode as poorly defined groups could cause
unpredictable results. The problem of a grouping table directly
or indirectly referencing itself (thus creating an infiniteloop) is
protected against; in fact, neither function will attempt to copy
or delete an HDU twice.

17.8.1. Grouping Table Routines

1. Create (append) a grouping table at the end of the cur-
rent FITS file pointed to by fptr. The grpname parame-
ter provides the grouping table name (GRPNAME keyword
value) and may be set to NULL if no group name is to
be specified. The grouptype parameter specifies the desired
structure of the grouping table and may take on the val-
ues: GTID ALL URI (all columns created), GTID REF
(ID by reference columns), GTID POS (ID by posi-
tion columns), GTID ALL (ID by reference and position
columns), GTID REF URI (ID by reference and FITS file
URI columns), and GTID POSURI (ID by position and
FITS file URI columns).

int fits_create_group(fitsfile *fptr, char *grpname,

int grouptype, int *status)

2. Create (insert) a grouping table just after the CHDU of the
current FITS file pointed to by fptr. All HDUs below the the
insertion point will be shifted downwards to make room for
the new HDU. The grpname parameter provides the group-
ing table name (GRPNAME keyword value) and may be set
to NULL if no group name is to be specified. The group-
type parameter specifies the desired structure of the group-
ing table and may take on the values: GTID ALL URI (all
columns created), GTID REF (ID by reference columns),
GT ID POS (ID by position columns), GTID ALL (ID by
reference and position columns), GTID REF URI (ID by
reference and FITS file URI columns), and GTID POSURI
(ID by position and FITS file URI columns).

int fits_insert_group(fitsfile *fptr, char *grpname,

int grouptype, int *status)

3. Change the structure of an existing grouping table pointed
to by gfptr. The grouptype parameter (see fitscreategroup()
for valid parameter values) specifies the new structure of the
grouping table. This function only adds or removes group-
ing table columns, it does not add or delete group members
(i.e., table rows). If the grouping table already has the desired
structure then no operations are performed and function sim-
ply returns with a (0) success status code. If the requested
structure change creates new grouping table columns, then
the column values for all existing members will be filled with
the null values appropriate to the column type.

int fits_change_group(fitsfile *gfptr, int grouptype, int

4. Remove the group defined by the grouping table pointed to
by gfptr, and optionally all the group member HDUs. The
rmopt parameter specifies the action to be taken for all mem-
bers of the group defined by the grouping table. Valid val-
ues are: OPTRM GPT (delete only the grouping table) and
OPT RM ALL (recursively delete all HDUs that belong to
the group). Any groups containing the grouping table gfptr
as a member are updated, and if rmopt== OPT RM GPT
all members have their GRPIDn and GRPLCn keywords up-
dated accordingly. If rmopt== OPT RM ALL, then other
groups that contain the deleted members of gfptr are updated
to reflect the deletion accordingly.

int fits_remove_group(fitsfile *gfptr, int rmopt, int *status)

44

5. Copy (append) the group defined by the grouping table
pointed to by infptr, and optionally all group member HDUs,
to the FITS file pointed to by outfptr. The cpopt parame-
ter specifies the action to be taken for all members of the
group infptr. Valid values are: OPTGCP GPT (copy only
the grouping table) and OPTGCPALL (recursively copy
ALL the HDUs that belong to the group defined by inf-
ptr). If the cpopt== OPT GCP GPT then the members
of infptr have their GRPIDn and GRPLCn keywords up-
dated to reflect the existence of the new grouping table outf-
ptr, since they now belong to the new group. If cpopt==
OPT GCP ALL then the new grouping table outfptr only
contains pointers to the copied member HDUs and not the
original member HDUs of infptr. Note that, when cpopt==
OPT GCP ALL, all members of the group defined by inf-
ptr will be copied to a single FITS file pointed to by outfptr
regardless of their file distribution in the original group.

int fits_copy_group(fitsfile *infptr, fitsfile *outfptr,

int cpopt, int *status)

6. Merge the two groups defined by the grouping table HDUs
infptr and outfptr by combining their members into a single
grouping table. All member HDUs (rows) are copied from
infptr to outfptr. If mgopt== OPT MRG COPY then inf-
ptr continues to exist unaltered after the merge. If the mgopt
== OPT MRG MOV then infptr is deleted after the merge.
In both cases, the GRPIDn and GRPLCn keywords of the
member HDUs are updated accordingly.

int fits_merge_groups(fitsfile *infptr, fitsfile *outfptr,

int mgopt, int *status)

7. ”Compact” the group defined by grouping table pointed
to by gfptr. The compaction is achieved by merging (via
fits mergegroups()) all direct member HDUs of gfptr that
are themselves grouping tables. The cmopt parameter defines
whether the merged grouping table HDUs remain after merg-
ing (cmopt== OPT CMT MBR) or if they are deleted after
merging (cmopt==OPT CMT MBR DEL). If the grouping
table contains no direct member HDUs that are themselves
grouping tables then this function does nothing. Note that
this function is not recursive, i.e., only the direct member
HDUs of gfptr are considered for merging.

int fits_compact_group(fitsfile *gfptr, int cmopt, int *status)

8. Verify the integrity of the grouping table pointed to by gf-
ptr to make sure that all group members are accessible and
that all links to other grouping tables are valid. The firstfailed
parameter returns the member ID (row number) of the first
member HDU to fail verification (if positive value) or the
first group link to fail (if negative value). If gfptr is success-
fully verified then firstfailed contains a return value of 0.

int fits_verify_group(fitsfile *gfptr, long *firstfailed, int *status)

9. Open a grouping table that contains the member HDU
pointed to by mfptr. The grouping table to open is defined by
the grpid parameter, which contains the keyword index value
of the GRPIDn/GRPLCn keyword(s) that link the member
HDU mfptr to the grouping table. If the grouping table re-
sides in a file other than the member HDUs file then an at-
tempt is first made to open the file readwrite, and failing that

readonly. A pointer to the opened grouping table HDU is re-
turned in gfptr.
Note that it is possible, although unlikely and undesir-
able, for the GRPIDn/GRPLCn keywords in a member
HDU header to be non-continuous, e.g., GRPID1, GRPID2,
GRPID5, GRPID6. In such cases, the grpid index value spec-
ified in the function call shall identify the (grpid)th GRPID
value. In the above example, if grpid== 3, then the group
specified by GRPID5 would be opened.

int fits_open_group(fitsfile *mfptr, int group,

fitsfile **gfptr, int *status)

10. Add a member HDU to an existing grouping table pointed to
by gfptr. The member HDU may either be pointed to mfptr
(which must be positioned to the member HDU) or, if mf-
ptr== NULL, identified by the hdupos parameter (the HDU
position number, Primary array== 1) if both the grouping
table and the member HDU reside in the same FITS file.
The new member HDU shall have the appropriate GRPIDn
and GRPLCn keywords created in its header. Note that if the
member HDU is already a member of the group then it will
not be added a second time.

int fits_add_group_member(fitsfile *gfptr, fitsfile *mfptr,

int hdupos, int *status)

17.8.2. Group Member Routines

1. Return the number of member HDUs in a grouping table gf-
ptr. The number member HDUs is just the NAXIS2 value
(number of rows) of the grouping table.

int fits_get_num_members(fitsfile *gfptr, long *nmembers,

int *status)

2. Return the number of groups to which the HDU pointed
to by mfptr is linked, as defined by the number of
GRPIDn/GRPLCn keyword records that appear in its header.
Note that each time this function is called, the indices of the
GRPIDn/GRPLCn keywords are checked to make sure they
are continuous (ie no gaps) and are re-enumerated to elimi-
nate gaps if found.

int fits_get_num_groups(fitsfile *mfptr, long *nmembers,

int *status)

3. Open a member of the grouping table pointed to by gfptr.
The member to open is identified by its row number within
the grouping table as given by the parameter ’member’ (first
member== 1) . A fitsfile pointer to the opened member
HDU is returned as mfptr. Note that if the member HDU
resides in a FITS file different from the grouping table HDU
then the member file is first opened readwrite and, failing
this, opened readonly.

int fits_open_member(fitsfile *gfptr, long member,

fitsfile **mfptr, int *status)

4. Copy (append) a member HDU of the grouping table pointed
to by gfptr. The member HDU is identified by its row number
within the grouping table as given by the parameter ’mem-
ber’ (first member== 1). The copy of the group member

45

HDU will be appended to the FITS file pointed to by mf-
ptr, and upon return mfptr shall point to the copied mem-
ber HDU. The cpopt parameter may take on the follow-
ing values: OPTMCP ADD which adds a new entry in gf-
ptr for the copied member HDU, OPTMCP NADD which
does not add an entry in gfptr for the copied member, and
OPT MCP REPL which replaces the original member entry
with the copied member entry.

int fits_copy_member(fitsfile *gfptr, fitsfile *mfptr,

long member, int cpopt, > int *status)

5. Transfer a group member HDU from the grouping table
pointed to by infptr to the grouping table pointed to by outf-
ptr. The member HDU to transfer is identified by its row
number within infptr as specified by the parameter ’mem-
ber’ (first member== 1). If tfopt == OPT MCP ADD then
the member HDU is made a member of outfptr and remains
a member of infptr. If tfopt== OPT MCP MOV then the
member HDU is deleted from infptr after the transfer to outf-
ptr.

int fits_transfer_member(fitsfile *infptr, fitsfile *outfptr,

long member, int tfopt, int *status)

6. Remove a member HDU from the grouping table pointed to
by gfptr. The member HDU to be deleted is identified by
its row number in the grouping table as specified by the pa-
rameter ’member’ (first member== 1). The rmopt param-
eter may take on the following values: OPTRM ENTRY
which removes the member HDU entry from the grouping ta-
ble and updates the member’s GRPIDn/GRPLCn keywords,
and OPTRM MBR which removes the member HDU entry
from the grouping table and deletes the member HDU itself.

int fits_remove_member(fitsfile *fptr, long member,

int rmopt, int *status)

17.9. References

Berners-Lee, Tim, 1994. “World Wide Web
Initiative”, CERN - European Particle Physics Lab.
http://info.cern.ch/hypertext/WWW /TheProject.html .

Cotton, W. D., Tody, D. and Pence W., 1994. “Binary Table
Extension to FITS: A Proposal”, version dated June 13, 1994.

Grosbøl, P., Harten, R. H., Greisen, E. W., and Wells, D. C.,
1988. “Generalized extensions and blocking factors for FITS,”
Astronomy and Astrophysics Suppl., 73, 359-364.

Harten, R. H., Grosbøl. P., Greisen, E. W., and Wells,
D. C., 1988. “The FITS tables extension”, Astronomy and
Astrophysics Suppl., 73, 365-372.

Ponz, J. D., Thompson, R. W., and Munoz, J. R., 1994. “FITS
Image Extension” , Astronomy and Astrophysics Suppl., vol
105, pp 53-55.

46

	The Substring Array Convention for Binary Tables
	Preface
	Convention Definition
	Usage Notes

	Spatial Region File Convention
	The SIP Convention for Representing Distortion in FITS Image Headers
	Preface
	Introduction
	Definitions of the Distortion Keywords
	Example: Spitzer-IRAC Channel 4
	Software that Reads and Applies the Coefficients
	SIP for Hubble
	Issues and Caveats
	Possible New Features
	Concluding Remarks
	Acknowledgments
	References

	A Convention for preallocating header space for FITS keywords
	Preface
	Background
	Convention details

	TNX World Coordinate System
	Preface

	TPV World Coordinate System
	Preface

	ZPX World Coordinate System
	Preface

	The FITS Green Bank Keyword Convention
	Preface
	Original Green Bank Keyword Convention
	Generalized Green Bank Keyword Convention

	The ESO HIERARCH Keyword Convention
	Preface
	Convention Description

	The CONTINUE Long String Keyword Convention
	Preface
	Introduction
	Detailed Syntax of the Convention
	LONGSTR Keyword

	Keywords for Describing the Minimum and Maximum Values in Columns of FITS Tables
	Preface
	Keyword Definitions
	Examples

	FITS Header Inheritance Convention
	Preface
	INTRODUCTION
	IMPLEMENTATION DETAILS
	PRACTICAL CONSIDERATIONS
	REFERENCES

	FITS Foreign File Encapsulation Convention
	Preface
	Introduction
	 FOREIGN File Extension
	File Group (FG) Keywords
	Examples
	Implementation Notes

	Checksum Convention
	Preface
	Introduction
	DATASUM Keyword
	CHECKSUM Keyword
	CHECKSUM Keyword Implementation Guidelines
	Overview
	Recommended CHECKSUM Keyword Implementation
	Recommended ASCII Encoding Algorithm
	Encoding Example
	Incremental Updating of the Checksum
	Alternate Checksum Algorithms
	Digital Signatures
	Fletcher's Checksum
	Error Correcting Algorithms
	Example C Code for Accumulating the Checksum
	Example C Code for ASCII Encoding
	Acknowledgments
	References

	Tiled Image Compression Convention
	Preface
	General Description
	Keywords
	Columns
	Quantization of Floating-Point Data
	Dithering Algorithms
	ZQUANTIZ= 'NO_DITHER'
	ZQUANTIZ= 'SUBTRACTIVE_DITHER_1'
	ZQUANTIZ= 'SUBTRACTIVE_DITHER_2'

	Preserving undefined pixels with lossy compression
	Currently Implemented Compression Algorithms
	Rice compression algorithm
	GZIP compression algorithm
	IRAF PLIO compression algorithm
	H-Compress algorithm

	Random Number Generator

	Tiled Table Compression Convention
	Preface
	Overview
	Compression Overview
	Compression Directive Keywords
	Keywords in the Compressed Table
	Supported Compression Algorithms
	GZIP_1
	GZIP_2
	RICE_1

	Compressing Variable-Length Array Columns

	A Hierarchical Grouping Convention
	Preface
	Introduction
	Group Tables
	Group Member Identification Methods
	Group Table Keywords
	Group Table Columns

	Keywords for Group Member Extensions
	Example Group Table Headers
	Acknowledgments
	Appendix I. Reference Strings
	Appendix II. Application Program Interface
	Grouping Table Routines
	Group Member Routines

	References

